B.Sc. F.Y. CBCS Pattern Semester-II USPHT03 - Physics Paper-I (Vector Analysis and Electrostatics)

P. P Tim	ages : le : Thi	3 ree H	ours × 6 5 7 1 * Max. Marks	1 590 3 : 50
	Note	es : 2	 All questions are compulsory. Draw well labelled diagram wherever necessary. 	
		Eitł	ner:	
1.	a)	i)	Define scalar and vector with examples.	2
		ii)	Derive the expression for volume of parallelopiped.	4
		iii)	If $\vec{A} = \hat{i} - 3\hat{j} + \hat{k}$, $\vec{B} = 2\hat{i} - 4\hat{j} + 2\hat{k}$ and $\vec{C} = \hat{i} - 3\hat{j} - 2\hat{k}$ are sides vectors of parallelogram, find volume of parallelogram.	2
		iv)	Which of the following Vector is Solenoidal vector.	2
			1) $\vec{A} = x\hat{i} + y\hat{j} + z\hat{k}$ 2) $\vec{D} = y\hat{i} + z\hat{j} + x\hat{k}$	
			OR	
	b)	a)	Define divergence of a vector field. Explain its physical significance.	2 ¹ /2
		b)	State Gauss divergence and Stoke's theorem.	2 ¹ /2
		c)	Explain the meaning ofa) Line integralb) Surface integralc) Volume integral	21/2
		d)	Find the directional derivatives if $\phi = x^2 + 3xyz - z^2$ at (1,4,1)	21/2
		Eitł	ner:	
2.	a)	i)	Define Electric Field lines of forces.	1
		ii)	What is electric dipole moment? Find the expression for electric field intensity due to an electric dipole at a point (a) on axial line (b) on equatorial line. Hence prove $E_{axial} = 2E_{equitorial}$.	6
		iii)	Two charges of 25 nC and -25 nC are placed 10 cm apart. Calculate the intensity of electric field at a point 4 m from the centre of electric dipole on (a) axial line (b) equatorial line (Given $1/4\pi\epsilon_0 = 9 \times 10^9 \text{Nm}^2/\text{C}^2$).	3

OR

b)	a)	Derive an expression for Torque on an Electric dipole in an Uniform Electric Field.	
	b)	Explain the Conservative nature of Electric Field.	21/2

Explain the Conservative nature of Electric Field. b)

	c)	Derive an expression for Potential energy of an Electric Dipole.	21/2
	d)	Calculate the force on +20 C if two charges +10 C and +20 C are located at points (1,-6,3) and (-3,2,0) meter. (Given $1/4\pi\epsilon_0 = 9 \times 10^9 \text{Nm}^2/\text{C}^2$)	21/2
	Eitl	ner:	
a)	i)	Give the significance of the Gauss's law of electrostatics.	1
	ii)	Derive an expression for electric field due to a uniformly charged Spherical Shell using Gauss's law, at a point a) outside the Spherical Shell b) on the surface of the Spherical Shell c) inside Spherical Shell.	7
	iii)	Estimate the electric potential due to an electric dipole with dipole moment	2
		1.67×10^{-27} Cm on a point P which is located at distance 0.01 cm.	
		(Given $\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2 / \text{Nm}^2$)	
		OR	
b)	a)	Using Gauss theorem obtain an expression for electric field intensity due to an infinite charge conductor.	21/2
	b)	Derive expression for the electric field due to Point Charge by using Gauss theorem.	21/2
	c)	Explain the meaning of a) Linear Charge Density b) Surface Charge Density and c) Volume Charge Density.	21/2
	d)	Calculate the electric potential Gradient and electric field intensity, if electric potential in space is given by $V = 2x + 5y - 8z$.	21/2
	Eitl	ier:	
a)	i)	Explain classification of dielectrics.	2
	ii)	Derive expression for capacitance of Parallel Plate Capacitor Partially filled with a dielectric medium.	4
	iii)	Obtain an expression for capacitance of Cylindrical Condensor.	2
	iv)	Find the amount of charge stored on either plate of a capacitor 4×10^{-6} F when connected across a 12V battery.	2
		OR	
b)	a)	Obtain an expression for capacitance of a Parallel Plate Capacitor.	21/2
	b)	Explain polarization vector and electric displacement vector.	21/2
	c)	Derive an expression for energy per unit volume of a charged capacitor.	21/2

d) A spherical capacitor has an inner radius of 7 cm and an outer radius of 10 cm. Find $2\frac{1}{2}$ the capacitance of sphere. Assume that dilectric in between to be air.

3.

4.

5. Solve **any ten** of the following.

a)	Define Irrotational vector.	1
b)	Give two properties of Vector Product.	1
c)	What is gradient of scaler?	1
d)	What is dimension electric potential.	1
e)	Define electric field intensity.	1
f)	What is properties of electric charge?	1
g)	What is electric field when a Gaussian surface encloses no net charge?	1
h)	State Gauss theorem in differential form.	1
i)	What is the value electric field intensity inside spherical shell? And why?	1
j)	Define Electric Susceptibility.	1
k)	Define atomic Polarizability.	1
l)	What is unit of dielectric Polarization?	1
