B.Sc. - I CBCS Pattern Semester-II

USMT-04 - Mathematics Paper-II (Partial Differential Equations)

	Pages : ne : Th	2 * 6 5 6 8 *	GUG/W/23/11587 Max. Marks : 60
	Note	es: 1. Solve all five questions. 2. All questions carry equal marks.	
		$\mathbf{UNIT} - \mathbf{I}$	
1.	a)	Form the PDE by eliminating arbitrary function f from equation. $f\left(x+y+z,\;x^2+y^2+z^2\right)=0.$	•
	b)	Find the integral curves of $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(-y+x)}$	•
		OR	
	c)	Find the general integral of the PDE. $ (x^2 - yz)p + (y^2 - zx)q = z^2 - xy. $	•
	d)	Solve $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 - xy)dz = 0$.	(
		UNIT – II	
2.	a)	Show that the PDE $z = px + qy$ is compatible with any equation $f(x, y, z, p, q) = 0$, where f is homogeneous in x, y, z.	(
	b)	Find the complete integral of $z = p^2x + q^2y$, by Charpit's method.	•
		OR	
	c)	Find the complete solution of $(x^2 + y^2)(p^2 + q^2) = 1$.	(
	d)	Apply Charpit's method to solve $z^2 = pqxy$.	•
		UNIT – III	
3.	a)	Solve $(D^3 - 7DD'^2 - 6D'^3)z = \sin(x + 2y)$.	•
	b)	Solve $(2D^2 - DD' - 3D'^2)z = 5e^{x-y}$.	•

OR

c) Solve
$$\left(D^2 + 5DD' + 6D'^2\right)z = \frac{1}{y - 2x}$$

d) Solve
$$r+s-6t = y \cos x$$
.

UNIT - IV

4. a) Show that the solution of a non-homogeneous DE
$$(aD+bD'+c)z=0$$
 is
$$z=e^{-cx/a}F(ay-bx), a \neq 0.$$

b) Solve
$$\left(D^2 - D'\right)z = x e^{x+y}$$
.

OR

Solve
$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0$$
.

- d) Reduce the equation $r = x^2$ t to canonical form.
- 5. Solve any six.

a) Solve the differential equation
$$yzdx + zxdy + xydz = 0$$
.

b) Eliminating the arbitrary constant from equation. $z = ax + by + a^2 + b^2 \text{ obtain PDE.}$

c) Find the complete integral of
$$z = px + qy - 2p - 3q$$
.

d) Write the condition of compatibility for the PDE.
$$f(x,y,z,p,q) = 0 \text{ and } g(x,y,z,p,q) = 0.$$

e) Solve
$$2r + 5s + 2t = 0$$
.

f) Find the particular integral of
$$(2D-3D')z = e^{x-y}$$

g) Solve
$$(D+2D'-3)z=0$$
.

h) Classify the PDE.
$$y^2r - 2xys + x^2t = \left(\frac{y^2}{x}\right)p + \left(\frac{x^2}{y}\right)q.$$
