B.Sc. - I CBCS Pattern Semester-II

USMT-03 - Mathematics Paper-I (Ordinary Differential Equations and Difference Equations)

	Pages : ne : Th	ee Hours Difference Equations) * 6 5 6 7 *	GUG/W/23/11586 Max. Marks : 60
	Not	s: 1. Solve all the five questions. 2. Each question carry equal marks. UNIT - I	
1.	a)	Show that DE $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^3)dy = 0$ is exact and he	ence solve it 6
	b)	Solve $(1+y^2)dx = (\tan^{-1} y - x)dy$	6
		OR	
	c)	Solve $xy - \frac{dy}{dx} = y^3 e^{-x^2}$	6
	d)	Prove that the system of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self orthogonal.	6 nal.
		UNIT - II	
2.	a)	Solve the DE $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$	6
	b)	Find the solution of $y'' - 4y' + 4y = e^{2x} + \sin 2x$	6
		OR	
	c)	Solve the system: $D^2x - 2y = 0$ and $D^2y + 2x = 0$	6
	d)	Solve $(D^3 - 7D - 6)y = e^{2x}(1+x)$	6
3.		UNIT - III	
	a)	Find the complimentary function and particular integral of the DE $(x^2D^2 - 3xD + 4)y = 2x^2$	6
	b)	If $y_1 \& y_2$ are linearly dependent differentiable functions then show that the vanishes identically. Also prove the converse of this statements.	eir Wronskian 6
		OR	
	c)	Solve the DE: $y'' + n^2y = \csc nx$, by the method of variation of parameter	ers. 6

d) Solve $(x^2D^2 - xD + 4)y = \cos(\log x)$.

6

UNIT - IV

4. a) Deduce the difference equation representing a family of parabolas $y = ax^2$.

6

b) Solve: $4y_{n+2} - 4y_{n+1} + y_n = 0$.

6

OR

c) Solve $y_{n+3} - 5y_{n+2} + 3y_{n+1} + 9y_n = 2^n + 3^n$.

6

d) Solve $u_{x+1} - u_x = (x^2 - 2x)2^x$.

6

- 5. Solve any six.
 - a) Define the linear equations.

2

b) Reduce the equation $\cos x dy = y(\sin x - y) dx$ to linear equation.

2

c) Solve $(D^3 - 3D^2 + 3D - 1)y = 0$.

2

d) Find that particular integral of $(D^2 + 1)y = \sin 2x$.

2

e) Find the Wronskian for $y'' + y = \sec^2 x$.

2

2

f) Find C. F. for $x^2 \frac{d^2y}{dx^2} - 8x \frac{dy}{dx} + 8y = \log x$.

g) Write the E form of the equation $\Delta^2 y_n - 3\Delta y_n + 2y_n = 0$.

2

h) Define the difference equation & order of the difference equation.

2
