B.Sc. (Part-I) (New CBCS Pattern) Semester - II USCCHT04 - Chemistry Paper-II (Physical Chemistry)

P. Pages : 2 Time : Three Hours				GUG/S/23/11575 Max. Marks : 50	
	Note	es: 1. 2.	All questions are compulsory and carry equal marks. Draw diagram wherever necessary.		
1.	a)		inimum and maximum value of = $x^3 - 6x^2 + 12x - 5$	5	
	b)		hydrolysis constant? Describe the relationship between hydrolysis constant and ation constant of salt of strong acid and weak base.	5	
			OR		
	c)	Calcul	ate the value of $\log_{10}30 + \log_{10}4 - \log(62)^{1/2}$ by using log table.	21/2	
	d)	Find th	the equation of line passing through point $(3,2)$ & $(-4, -5)$.	21/2	
	e)	What i	s buffer solution? Explain mechanism of buffer action.	21/2	
	f)	Write a	a notes on common ion effect.	21/2	
2.	a)	State J	oule-Thomson effect? Describe Joule's Thomson porous plug experiment.	5	
	b)	of Ben	nd explain Hess's Law of constant heat of summation. Calculate heat of formation zene from following data: $G_6H_6(1) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(1) \Delta H = -3267.7 \text{ kJ}$	5	
		ii) C	$C(S) + O_2(g) \rightarrow CO_2(g) \Delta H = -393.5 \text{ kJ}$		
			$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)\Delta H = +285.9 \text{ kJ}$		
			OR		
	c)	Define	extensive and intensive properties with suitable example.	21/2	
	d)	Define	Molar heat capacity. Show the relation $c_p - c_v = R$	21/2	
	e)	Derive	Kirchoff's equation.	2¹/ ₂	
	f)	A gas	expands isothermally reversibly against a constant external pressure of 1 atm from a	2¹/ 2	

A gas expands isothermally reversibly against a constant external pressure of 1 atm from a f) $2^{1/2}$ volume of 10 dm³ to a volume of 20 dm³. In this process 800J of thermal energy transfer from its surroundings. Calculate internal energy Δu in Joules.

3.	a)	Derive the kinetic gas equation for one mole of an ideal gas.	
	b)	Derive Vander Waal's equation of state.	5

OR

	c)	Deduce the Boyle's law from kinetic gas equation.	21/2				
	d)	Write a notes on effect of temperature on molecular velocity.					
	e)	What are the causes of deviation from ideal behavior.					
	f)	State and explain law of corresponding state.	21/2				
4.	a)	Define viscosity. Explain Ostwald viscometer method for the determination of viscosity liquid.	5				
	b)	State and explain.i) Law of constancy of interfacial angles. ii) Element of symmetry.	5				
	OR						
	c)	Find miller indices of Lattice plane which intersect coordinate axis at $2, -3, 1$.					
	d)	Derive Bragg's equation.	21/2				
	e) Describe the crystal structure of CsCl by Laue's method.						
	f)	Explain.i)Relative Viscosity.ii)Specific Viscosity.iii)Intrinsic Viscosity.	21/2				
5.		Attempt any ten.					
		a) Evaluate $\frac{6!}{(4!)(3!)}$	1				
		b) Definei) Solubilityii) Solubility product.	1				
		c) The pH of acidic solution is 2.70. Calculate the hydrogen ion concentration of this solution.	1				
		d) Definei) Isothermal processii) Path function.	1				
		e) Write any two statements of 1 st law of thermodynamic.	1				
	f) Define Bond Dissociation energy.		1				
		g) State Avogadro's law.	1				
		h) Definei) Mean free pathii) Collision Number.	1				
		i) Define – Boyle temperature.	1				
		j) What are Bravais lattice?	1				
		k) Definei) Lattice pointii) Unit cell.	1				
		1) Define and write unit of surface tension.	1				
