M.Sc. (Part-II) (Chemistry) (CBCS Pattern) Semester - IV **PSCHT13 - Paper-XIII : Spectroscopy**

P. Pages : 3 Time : Three Hours			S X 1 5 9 4 X Max.	
	Note	s: 1. 2.	All questions are compulsory. All questions carry equal marks.	
1.	a)		s the different types of electronic transitions. Explain the effect of conjugation on nic transition.	8
	b)		s the principle of photoelectron spectroscopy. Explain the photoelectron spectra of d HBr.	:
			OR	
	c)	State a	nd explain the Frank Condon principle.	4
	d)	Discus	s the Fiesher wood ward rules for dienes. Calculate the value of λ_{max} for	2
	e)	Give th	e applications of ESCA in structural determination.	4
	f)	Explain	the basic idea about Auger electron spectroscopy.	4
•	a)		s the resonance condition in PMR spectroscopy. Explain the PMR spectra of nd AMX molecules with suitable example.	
	b)		s Shielding and deshielding of protons? Explain the various factors affecting the al shift with suitable examples.	:
			OR	
	c)	Define	coupling constant. Discuss the variation of coupling constant with dihedral angle.	
	d)	Write a	note on shift reagent.	
	e)	What is	s spin-spin interaction. Draw the PMR spectra of ethyl acetate.	
	f)	ii) A M	ive the Karplus equations. ssign the structure on the basis of following data. tolecular formula : $C_4H_8O_2$ MR : $\delta 1.23$ (triplet, 3H) $\delta 1.97$ (singlet, 3H)	·
			SAOC (and all)	

- a) Explain the following NMR spectroscopic techniques.
 i) COSY
 ii) DEPT
 - An organic compound having molecular formula $C_9H_{10}O_2$ exhibits the following b) i) spectral data IR : 1745cm⁻¹(s), 1225cm⁻¹(br, s), 749(s); 697cm⁻¹(s) UV : λ_{max} at 268, 264, 262, 257 nm ¹HNMR : δ1.96(3H,s); 5.00(2H,s); 7.22(5H,s) Deduce the structure of the compound An organic compound (Molecular weigh 108) is not acid, can be easily oxidized to a ii) crystalline compound (m. pt. 122°C). It gives the following spectral data UV: λ_{max} 255nm ($\varepsilon_{max} = 202$) IR:V_{max}^{cm⁻¹} 3402(s,br), 3065(w), 2888(m) 1499(w,sh), 1455(m) ¹HNMR: δ3.90(singlet,1H) $\delta 4.60$ (singlet, 2H) $\delta 7.26$ (singlet, 5H)

Deduce the structure of the compound

OR

c)	Discuss the APT technique in brief.			
d)	Explain the use of NMR in medical diagnosis.	4		
e)	 A compound with molecular formula C₉H₅NO₄ forms the following data in its infrared spectrum 3000-2500 (b), 2225 (m), 1715 (s), 1605, 1518(s),1344(s), 770cm⁻¹ In NMR spectrum two bands are formed as -1.1 T (singlet, 1H) Unsymmetrical pattern 2.6-2.75 T (4H) Determine the structural formula of the compound. 	4		
f)	Write a note on:i) Quadrupole nucleiii) Quadrupole moment	4		
a)	Explain Bragg's condition. Discuss Debye Scherrer method for the x-rays analysis.	8		
b)	Derive the Wierl equation of electron diffraction technique. Explain the technique scattering of neutron by solids and liquids.			
	OR			
c)	Explain Laue method for the x-rays analysis.	4		
d)	Explain how electron diffraction of gases is carried out.	4		
e)	Distinguish the electron and neutron diffraction in brief.	4		

GUG/S/23/11448

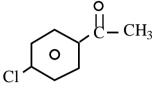
4.

8

8

f) Determine atomic spacing in a NaCl crystal having cubic lattice; the density of NaCl is $2.16 \times 10^3 \text{kg/m}^3$ and the average masses of Na and Cl atoms are $3.82 \times 10^{-26} \text{kg}$ and $5.89 \times 10^{-26} \text{kg}$ respectively.

2


2

2

2

2

- **5.** a) Define with suitable examples.
 - i) Chromophore
 - ii) Auxochrome
 - b) Calculate the absorption maximum for the following compound.

- c) Compare ${}^{13}C-NMR$ spectroscopy with ${}^{1}H-NMR$ spectroscopy.
- d) How many ${}^{1}H$ NMR signals are obtained in the following compounds.

i)
$$\begin{array}{c} CH_2 \longrightarrow O \\ | & | \\ CH_2 \longrightarrow CH_2 \end{array}$$
 ii) $\begin{array}{c} H_3C \longrightarrow CH_3 \\ | & | \\ H_3C \longrightarrow CH_2 \\ | \\ CH_3 \end{array}$

iii)
$$\swarrow$$
 -CH₂-CH₃ iv) CH₃-CH₂-O-CH₂-C-OH

- e) Write a note on Nuclear overhouser effect.
 f) Give the advantages of FT-NMR.
 g) Calculate Miller indices of crystal planes which cut through the crystal axes at
 2
 - i) 2a, 3b, c
 - ii) 2a, -3b, -3c
- h) Compare scattering intensity vs scattering angle.

GUG/S/23/11448