M.Sc. (Part-II) (Chemistry) CBCS Pattern Semester-IV PSCHT13 - Paper-XIII : Spectroscopy

P. Pages : 3 Time : Three Hours		3 ree Hours $* 6 4 4 4 *$	GUG/W/23/11448 Max. Marks : 80	
1.	a)	Explain Fisher-Woodward rules with suitable examples and calculate value from the following molecules.	es of λ _{max} - 8	
	b)	What is photoelectron spectroscopy. Explain its application related to the st determination.	tructure 8	
		OR		
	c)	Write note on Auger electron spectroscopy.	4	
	d)	Explain all possible electronic transition in a given molecule with suitable diagram.	4	
	e)	How will you differentiate between structural isomers on the basis of UV-Vi	s spectroscopy? 4	
	f)	How will you get chemical information from ESCA?	4	
2.	a)	Explain the principle of NMR spectroscopy & conditions for Nuclei to be N inactive.	NMR active and 8	
	b)	What is coupling constant? How Karplus equation is effective for coupling dihedral angle.	constant with 8	
		OR		

d) Do correct pairing of chemical shift values with protons C hydrogen atom. 4

Differentiate between first order and second order spectra.

c)

4

e) Identify homotopic, enantiotopic and diastereotopic protons in the given molecules.

- f) Determine the structure of given molecule from NMR data M.F. C_3H_6O
 - 1H $\delta = 9.2 \text{ ppm t}$
 - 2H $\delta = 2.3$ ppm multiplate
 - 3H $\delta = 1.1$ ppm triplete
- **3.** a) Explain DEPT (Distortionless enhancement by polarization transfer) in a given molecule **8** at 45, 90 and 135.

$$\begin{array}{c} CH_{3} \\ CH - CH_{2} - \begin{array}{c} O \\ C \\ CH - CH_{3} \end{array}$$

- b) Explain following terms with suitable example.
 - i) Nuclearoverhauser effect
 - ii) Nuclear quadrupole resonance

OR

c)	What is FT-NMR-technique and explain its advantages.			4
d)	Describe COSY. NMR spectroscopy.			4
e)	Elucidate the structure of organic molecule from given NMR data. M. F. = $C_6H_{14}O$, $\delta = 1.1$ ppm, doublet, 12H $\delta = 3.2$ ppm septate 2H			
f)	Pair the splitting pattern from the follow	wing.		4
	i) CH ₃ -CH ₂ -	a)	doublet septate	
	ii) CH ₃ – CH –	b)	doublet quartete	
	iii) –CH–CH–	c)	triplete quartete	
	iv) CH_3 CH-			
	П ₃ С	d)	doublet – doublet	
a)	Explain Ramchandram Plot to determin	ne the	structure of proteins.	8

b) Explain Bragg's method for determining the crystal structure of solid.

OR

2

4.

8

8

4

c)	Explain Wierl. Equation of electron diffraction technique.	4
d)	Explain Laue method for the x-rays analysis.	4
e)	A first order reflection from the (111) planes of a cubic crystal was observed of a glancing angle 11.2° using Cu-x-ray radition. Calculate the length of unit cell.	4
f)	Differentiate between electron and neutron diffraction in brief.	4
a)	Write note on hypsochromic shift.	2
b)	Which transition from the following required lower amount of energy. $\sigma - \sigma^* \pi \rightarrow \pi^* \pi \rightarrow x$	2

c) How many types of protons present in the given molecule & indicate their chemical shift 2 value.

5.

d) Which protons from the following molecules are most shielding and desheided.

Chemical shift of proton is 1.2 ppm convert this value in H_z . Instrumental frequency is 2 e) 60MH_{z}

2

- Which carbon signal or peak disappear in DEPT spectrum at 45° in proton decoupled f) 2 spectrum.
- Give Braggs equation and name the term involve in the equation. 2 g) 2
- What is neutron diffraction? h)
