M.Sc.(Physics) (CBCS Pattern) Semester - IV PSCPHYT14 - Paper-XIV (Core-XII) : Solid State Physics

P. P Tim	ages : ie : Th	2 aree Hours GUG * 1 5 6 4 * Ma	/ S/23/11413 ax. Marks : 80
	 a)	Either: State and prove Bloch theorem. Discuss its importance in the band theory	8
	b)	Using Kronig-Penny model, show that $P \ll 1$, the energy of lowest energy band is $E = h^2 p / ma^2$	8
		OR	
	e)	Obtain an expression for paramagnetic susceptibility of electron on the basis of Langevin's classical theory and show how Pauli modified it.	8
	f)	Give an account for the quantum theory of paramagnetism and discuss the low and temperature cases.	high 8
		Either:	
2.	a)	Explain Dulong Petit law.	8
	b)	What is Brillouin zone, explain.	8
		OR	
	e)	Write on magnetism of Iron group and rare earth ions.	8
	f)	Explain Weiss theory of Ferromagnetism.	8
		Either:	
3.	a)	Write on Mossbauer effect and its application.	8
	b)	Explain resonance phenomenon in electron spins in solids.	8
		OR	
	e)	What is an extrinsic semiconductor? Discuss the variation of the fermi level with temperature for an n-type semiconductor?	8
	f)	What is Hall effect? State the importance of Hall effect? Derive the expression for coefficient and mobility of charge carrier.	hall 8
		Either:	
4.	a)	Discuss BCS theory of superconductor.	8
	b)	What is Meissner effect? Obtain expression for the London penetration depth of M field for superconductor.	agnetic 8

e)	What is Isotope effect? Describe superconducting coherence length?		8
f)	f) Discuss DC and AC Josephson effect.		8
	Answer of all the following.		
	a)	Derive an expression for the effective mass of the electron in a crystal and explain the physical basis of it.	4
	b)	The Debye temperature for diamond is 2230K. Calculate the highest possible vibrational frequency and the molar heat capacity of diamond at 10K.	4
	c)	The intrinsic carrier density at room temperature in germanium is 2.37×10^{19} / m ³ . If the electron and hole mobilities are 0.38 and $0.18 \text{ m}^2 \text{v}^{-1} \text{s}^{-1}$, respectively, Calculate the resistivity of the intrinsic germanium.	4
	d)	State any four applications of superconductivity.	4

5.