M.Sc.(Physics) CBCS Pattern Semester-IV PSCPHYT13 - Core-II - Paper-XIII : Nuclear and Particle Physics

P. Pages: 2

Time : Thre Hours

* 6 4 1 3 *

Max. Marks: 80

GUG/W/23/11412

Either:

1.	a)	With the help of liquid drop model, obtain the condition for stability of nucleus.	8
	b)	Explain the single particle shell model of nucleus.	8
		OR	

e) Explain the terms:

	Eit	her:	
f)	What are Schmidt lines? Explain Schmidt diagrams separately for odd proton and odd neutron nuclei.		8
	ii)	Electrical quadrupole moment for the nucleus.	4
	i)	Magnetic moment.	4

- 2. a) Show that the nuclear reaction cross-section may exceed the geometrical cross-section of 8 nucleus.
 - b) What are nuclear reactions? Give their conservation laws and mechanism of nuclear reaction. 8

OR

- e) What are the assumptions made in compound nucleus hypothesis? Give suitable examples **8** of nuclear reactions to support your answer.
- f) Discuss the elementary idea of alpha, beta and gamma decays.

Either:

- 3. a) Explain the interaction of charged particles and electromagnetic radiation with matter. 8
 - b) Stating the principles of nuclear radiation detectors, explain construction and working of a **B** G-M counter.

OR

e)	Explain the working principle of cyclotron in detail.	8
f)	Explain with neat diagram the working of scintillation detector.	8

8

Either:

4.	a)	Explain each terms of Gell Mann- Nishijima formula.	8
	b)	Discuss the conservation laws for elementary particles in detail.	8
		OR	
	e)	What are strong, weak and electromagnetic interactions? Explain.	8
	f)	Discuss the quark model of elementary particles.	8
5.		Answer the followings.	
		a) What are the properties of nuclear forces?	4
		b) Explain the fission and fusion reactions?	4
		c) What are the advantages of semiconductor detector?	4
		d) Discuss the properties of hadrons.	4
