M.Sc. S.Y. (Physics) CBCS Pattern Semester-III PSCPHYT09-Core Paper-IX - Quantum Mechanics-II

P. F Tin	Pages : ne : Thr	2 GUG/W/23/1 ree Hours * 6 3 1 4 * Max. Marks	1295 s : 80
		Either:	
1.	a)	Explain first order Stark effect in the ground state and first excited state the H-atom.	8
	b)	State and explain normal and anomalous Zeeman effects with the help of heat energy diagrams.	8
		OR	
	e)	Explain application of time independent perturbation theory.	8
	f)	Give first order perturbation theory of non-degenerate system and find the expression of energy and wave function.	8
		Either:	
2.	a)	What is Einstein's atomic radiation? What are Einstein's A and B coefficients. Derive equation for them.	8
	b)	Discuss time dependent perturbation theory and derive the expression of Fermi-Golden rule of probability transition.	8
		OR	
	e)	What do you mean by barrier penetration? Explain use of WKB method in barrier penetration.	8
	f)	Explain Variational principle and its application to simple cases like ground state of He-atom.	8
		Either:	
3.	a)	Explain the outlines of Heitler-London theory of the hydrogen molecules.	8
	b)	Describe the method of scattering by an attractive square well potential and a perfectly rigid sphere.	8
		OR	
	e)	Derive the expression of wave function and energy of the ortho and parastates of the Helium atom and their perturbation by coulomb repulsion.	8
	•		

f) Explain scattering cross-section in laboratory and centre of mass system and scattering by **8** a central potential.

Either:

4.	a)	Derive Klein-Gordon relativistic equation for a free particle.	8
	b)	Explain spin-orbit interaction for Dirac's particles.	8
		OR	
	e)	Write down the Dirac equation for a free particle construct matrices for α_x , α_y , α_z and β .	8
	f)	Discuss the solution for hydrogen atom in Dirac's theory.	8
5.		Attempt all of the following.	
		a) Explain second order stark effect in harmonic oscillator.	4
		b) What is Yukawa potential in deuteron?	4
		c) Write a note on identical particles.	4
		d) Explain physical significance of negative energy states.	4
