M.Sc. First Year (Physics) CBCS Pattern Semester-II PSCPHYT07 - Core Paper-VII : Classical Mechanics

P. Pages : 2

Time : Three Hours

* 6 2 5 0 *

Max. Marks: 80

8

8

1. Either:

a) Explain the terms:

- i) 'D' Alembert's principle
- ii) Hamilton's principle
- iii) Principle of virtual work
- iv) Constraint
- b) Derive Lagrange's equation from D'Alembert's principle for conservative system. 8

OR

- e) Identify and explain the constraints for (i) rigid body (ii) spherical pendulum with variable **8** length.
- Find the equation of motion and force of constraint in case of simple pendulum by using
 Lagrange's method of undetermined multiplier's.

2. Either:

a) Explain concept of Routhian

Find Routhian for the Lagrangian L given by : $L = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{GMm}{r}$ where

$$\mu = \frac{\mathrm{m}\mathrm{M}}{\mathrm{m}+\mathrm{M}}\,.$$

. .

b) By using Hamilton dynamics write down the equation of motion of a particle in a central force field.

OR

- e) Define 'Hamiltonian principle'. Obtain Hamilton's canonical equation of motion. 8
- f) Explain the term canonical transformation. Show that Poisson's bracket is invariant under anonical transformation.

3. Either:

a) What is meant by 'Laboratory system' and the 'Centre of mass system' in a two body scattering problem? How will you transform the differential cross – section, energy and scattering angle from the centre of mass system to the Laboratory system?

b) A particle describing a closed orbit under the influence of a central force. Derive the quantities which remain invariant during the motion. Show that total energy and angular momentum of a particle under a central force is conservative. Also show that rate at which the area is swept out by the radius vector is constant.

OR

	e)	Show that total energy and angular momentum of a particle under a central force is conservative. Also show that rate at which the area is swept out by the radius vector is constant.	8
	f)	Obtain an expression for the reduced mass of the system.	8
		Either:	
	a)	State and prove Euler's theorem.	8
	b)	What do you understand by Normal co-ordinates and normal modes of Vibrations?	8
OR			
	e)	Explain Periodic motion in small oscillations.	8
	f)	Consider a homogeneous cube of density r, mass M and side a. Taking origin Oat corner and axes along the edges of the cube, determine the inertia tensor, the principal axes and their associated moments of inertia.	8
	a)	What are constraints? Give the difference between the holonomic and non-holonomic constraint with one example each.	4
	b)	Define scattering cross section, scattering angle and Impact Parameter.	4
	c)	What is stability of orbit? Also write the conditions for the closure.	4
	d)	Explain the term "Principal axes transformation".	4

4.

5.