Time : Three Hours

Either:

1. a) Obtain Lagrange's equation of motion from Hamilton's variational principle.
b) Explain D'Alembert's principle.

OR

e) Derive Lagrange's equation of motion from D'Alembert's principle.
f) Discuss variational principle.

Either:

2. a) Discuss Routh's procedure for cyclic co-ordinates.
b) Explain Hamilton - Jacobi theory.

OR

e) Define 'Hamiltonian Principle' obtain Hamilton's canonical equation of motion.
f) Show that if a co-ordinate corresponding to a rotation is cyclic, rotation of the system about the given axis has no effect on the description of the system motion i.e. angular momentum is conserved.

Either:

3. a) Establish a relation between scattering angles in laboratory system and centre of mass system.
b) Obtain an expression for the reduced mass of the system.

OR

e) A particle describing a closed orbit under the influence of a central force. Derive the quantities which remain invariant during the motion.
f) Show that total energy and angular momentum of a particle under a central force is conservative. Also show that rate at which the area is swept out by the radius vector is constant.

Either:

4. a) State and prove Euler's theorem.
b) What do you understand by Normal Co-ordinates and normal modes of vibrations?

OR

e) Explain moment of inertia tensor.
f) Explain periodic motion in small oscillations.
5. Answer all the followings:
a) Using Lagrange's equation of motion for conservative system. Show that $m a=-\frac{\partial v}{\partial x}$
for a particle of mass ' m ' moving with acceleration (a) in a potential (v) along $x-$
direction.
b) Discuss in brief Canonical transformations.
c) Explain stability of orbit. 4
d) Explain the term "Principal axes transformation".

