M.Sc. F.Y. (Physics) (CBCS Pattern) Semester - II PSCPHYT07 - Core Paper-VII Classical Mechanics

P. P Tim	ages : e : Thi	2 GUG/S/23/1 ree Hours * 1 4 0 0 * Max. Marks	1222 s : 80		
	Eith	Either:			
1.	a)	Obtain Lagrange's equation of motion from Hamilton's variational principle.	8		
	b)	Explain D'Alembert's principle.	8		
		OR			
	e)	Derive Lagrange's equation of motion from D'Alembert's principle.	8		
	f)	Discuss variational principle.	8		
	Eith	er:			
2.	a)	Discuss Routh's procedure for cyclic co-ordinates.	8		
	b)	Explain Hamilton – Jacobi theory.	8		
		OR			
	e)	Define 'Hamiltonian Principle' obtain Hamilton's canonical equation of motion.	8		
	f)	Show that if a co-ordinate corresponding to a rotation is cyclic, rotation of the system about the given axis has no effect on the description of the system motion i.e. angular momentum is conserved.	8		
	Eith	er:			
3.	a)	Establish a relation between scattering angles in laboratory system and centre of mass system.	8		
	b)	Obtain an expression for the reduced mass of the system.	8		
		OR			
	e)	A particle describing a closed orbit under the influence of a central force. Derive the quantities which remain invariant during the motion.	8		
	f)	Show that total energy and angular momentum of a particle under a central force is conservative. Also show that rate at which the area is swept out by the radius vector is constant.	8		

Either:

4.	a)	State and prove Euler's theorem.	8
	b)	What do you understand by Normal Co-ordinates and normal modes of vibrations?	8
		OR	
	e)	Explain moment of inertia tensor.	8
	f)	Explain periodic motion in small oscillations.	8
5.		Answer all the followings:	
		a) Using Lagrange's equation of motion for conservative system. Show that $ma = -\frac{\partial v}{\partial x}$ for a particle of mass 'm' moving with acceleration (a) in a potential (v) along x – direction.	4
		b) Discuss in brief Canonical transformations.	4
		c) Explain stability of orbit.	4
		d) Explain the term "Principal axes transformation".	4
