M.Sc. First Year (Physics) CBCS Pattern Semester-II PSCPHYT06 - Paper-III : Statistical Physics

	Pages : ne : Th	2 ree Hours $\star 6 2 4 9 \star$	GUG/W/23/11221 Max. Marks : 80			
		Either:				
1.	a)	State and prove Liouville's theorem.	8			
	b)	What is Gibb's paradox? How it is resolved?	8			
OR						
	c)	What is meant by ensembles? Discuss micro-canonical, canonical and gran ensembles.	ad canonical 8			
	d)	Define partition function. Express Helmholtz free energy and entropy.	8			
		Either:				
2.	a)	Explain Bose-Einstein condensation.	8			
	b)	What is B-E statistics? Derive an expression $n_i = \frac{g_i}{e^{\alpha + \beta E i} - 1}$ for the most p distribution of the particle of a system obeying B-E statistics.	probable 8			
	OR					
	c)	Discuss the behavior of ideal Bose gas below and above Bose temperature.	8			
	d)	Show that for photon the mean pressure (P) is related to total energy (E) by $< P >= \frac{1}{3} \frac{< E >}{V}$.	the relation 8			
		Either:				
3.	a)	Show that measure of degeneracy of an ideal strongly degenerated fermi ga	as is given by: 8			
		$\frac{1}{D} = \frac{h^2}{2m \text{KT}} \left(\frac{3n}{4\pi \text{Vg}_s}\right)^{2/3}$				
	b)	Discuss the electronic specific heat for free electrons in metals using ideal	fermi model. 8			

OR

c) Solve the following numerical:

	i) Find the fermi energy in eV of copper on the assumption that each copper atom contributes one free electron to the gas Density of copper = 8.94×10^3 kg/m ³							
	Mass of electron = 9.11×10^{-31} kg							
		No. of electron per unit volume $= 8.48 \times 10^{28} \text{ e}/\text{m}^3$						
	ii) The no. of conduction electron per c.c. in Beryllium is 24.2×10^{22} and in Cesium is 0.91×10^{22} . If the fermi energy of conduction electron in Beryllium is 14.44 eV calculate fermi energy of conduction electron in Cesium.							
d)	Discuss cluster expansion for classical gas system.							
	Either:							
a)	What is Brownian motion & Explain Langevin theory of Brownian motion of particles.							
b)	Discuss phase transition of first and second order.							
OR								
c)	Explain Landau theory of phase transition.							
d)	Explain the terms:							
	i)	Order parameter	ii)	Critical exponents				
	iii)	Scaling hypothesis	iv)	Random walk				
	Attempt all the followings.							
	a) Discuss the term macrostate and microstate with the help of examples.							
	b) Explain Boltzmann limit of Bosons and Fermions.							
	c) Derive virial equation of state.							
	d)	What is Ising model.			4			

4.

5.