M.Sc. F.Y. (Physics) (CBCS Pattern) Semester - II **PSCPHYT06 - Core Paper-VI : Statistical Physics**

P. Pages : 2

Time : Three Hours

GUG/S/23/11221

Max. Marks: 80

8

8

8

Either:

1. a)State and prove Liouville's theorem. What is the significance of Liouville's theorem?8

b) What is Gibb's Paradox? Show that how it can be removed if $S = NK \left(In \left(\frac{V}{N} \right) + \frac{5}{2} + \frac{3}{2} In \left(\frac{2\pi MKT}{h^2} \right) \right)$

OR

- e) Explain the concept of an ensemble? Discuss micro canonical, canonical and grand canonical ensembles and also derive the expression for the entropy of perfect gas in micro canonical ensemble.
- f) Define partition function and calculate it's value for an diatomic gas Molecule.

Either:

2. a) Show that for photon the mean pressure $\langle P \rangle$ is related to total energy E by relation: $\langle P \rangle = 1 \langle E \rangle$

$$\langle P \rangle = \frac{1}{3} \frac{\langle L \rangle}{V}$$

b) Explain Bose – Einstein condensation. And also explain limiting case of B.E. Statistics. 8

OR

e) Derive the relation:

$$E_{F_0} = \frac{h^2}{2m} \left(\frac{3n}{8\pi}\right)^{2/3}$$

Where, letters have their usual meaning. Find the fermi level at absolute zero for copper. Given that,

Molar Mass of Copper, $M = 63.55 \times 10^{-3} \text{ Kg} / \text{ mole}$ Density, $\rho = 8.93 \times 10^{3} \text{ Kg} / \text{m}^{3}$ Avogadro's No. $N = 6.023 \times 10^{23} \text{ per mole}$ Planck's constant, $h = 6.63 \times 10^{-34} \text{ JS}$ Mass of electron, $m = 9.11 \times 10^{-31} \text{ Kg}$

f) Explain in detail symmetry of wave function for quantum particles.

8

8

Either:

3.	a)	Show that the measure of degeneracy of ideal fermi system is given by $z = \frac{1}{D} = \frac{\rho}{g} \left(\frac{h^2}{2\pi MKT}\right)^{3/2}$	8
	b)	Discuss the concept of an electronic specific heat in detail.	8
		OR	
	e)	What are cluster integrals? Discuss cluster expansion for classical gas system.	8
	f)	Explain behaviour of an ideal fermi gas at absolute zero temperature.	8
	Eith	ner:	
4.	a)	Explain Landau's theory of phase transition and show that specific heat at constant pressure is discontinuous at transition point in second order phase transition.	8
	b)	Explain the terms.	8
		i) Critical exponents	
		ii) Order parameter	
		iii) Scaling hypothesis	
		iv) Random walk	
		OR	
	e)	Obtain Fokker – Planck equation for Brownian motion.	8
	f)	What is Ising model? Discuss Ising model for phase transition of second order.	8
5.		Attempt all the followings:	
		a) Explain the terms:	4
		i) microstate and	
		ii) microstate with the help of an example.	
		b) Obtain the condition for B.E. statistics to approached classical M.B. distribution.	4
		c) What do you mean by fermionic condensation? Explain.	4
		d) Explain the importance of Weiss theory of ferromagnetism.	4
