M.Sc. (Physics) (CBCS Pattern) Semester - II **PSCPHYT05 - Paper-V (Core-V) : Quantum Mechanics-I**

P. Pages : 2 Time : Three H			GUG/S/23/11220 Max. Marks : 80	
		Either:		
1.	a)	Give the physical interpretation of ψ and find the expression of probability density.	current 8	
	b)	State and prove Ehrenfest's theorem. Explain its importance.	8	
	OR			
	e)	What are characteristic features of stationary states.	8	
	f)	Derive the uncertainty relations for operators A, B such that $[A, B] = iC$	8	
		Either:		
2.	a)	Show that the function e^{ikx} is a simultaneous eigen function of $-i\hbar \frac{\partial}{\partial x}$ and	$-\hbar \frac{\partial^2}{\partial x^2}$ 8	
		operators find their eigen values.	UN UN	
	b)	What is meant by unitary transformation? Derive equation of transformation orthonormal basis to another.	n from one 8	
		OR		
	e)	State and prove schwarz inequality. Show that it leads to general uncertainty	y principle. 8	
	f)	How will you express eigen value equation in matrix representation.	8	
		Either:		
3.	a)	Give the complete theory of simple harmonic oscillators using operator met	hod. 16	
	OR			
	e)	Explain the role of L^2 operator in central force problem.	8	
	f)	Show that $\text{En} = \left(n + \frac{1}{2}\right)\hbar$ w using raising and lowering operator to $H n \ge H$	$\operatorname{En} \mathbf{n}>.$	
		Either:		
4.	a)	Find the eigen values of J^2 and J_4	8	

OR

Show that e)

- $\left[\mathbf{J}_{+},\mathbf{J}_{-}\right]=2\hbar\mathbf{J}_{2}$ i)
- ii) $\left[J_x^2, J_y^2\right] = \left[J_y^2, J_z^2\right] = \left[J_z^2, J_x^2\right]$
- f) Using addition of two angular momenta, Derive the relation between m, m₁, and m₂ where 8 the symbols have their usual meanings.

5. Attempt all.

a)	State Bohr's correspondence principle and Ehrenfest theorem.	4
b)	Show that Hermitian operators have real eigen value.	4
c)	Find the Parity of $\gamma_{\ell}^{m}(\theta,\phi)$.	4
d)	Find matrix element of J_x for $j=1$.	4

2

8