Time : Three Hours

Either:

1. a) Give the physical interpretation of ψ and find the expression of probability current density.
b) State and prove Ehrenfest's theorem. Explain its importance.

OR

e) What are characteristic features of stationary states.
f) Derive the uncertainty relations for operators A, B such that $[A, B]=i C$

Either:

2. a) Show that the function $\mathrm{e}^{\mathrm{ikx}}$ is a simultaneous eigen function of $-\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{x}}$ and $-\hbar \frac{\partial^{2}}{\partial \mathrm{x}^{2}}$ operators find their eigen values.
b) What is meant by unitary transformation? Derive equation of transformation from one orthonormal basis to another.

OR

e) State and prove schwarz inequality. Show that it leads to general uncertainty principle.
f) How will you express eigen value equation in matrix representation.

Either:

3. a) Give the complete theory of simple harmonic oscillators using operator method.

OR

e) Explain the role of L^{2} operator in central force problem.
f) Show that $E n=\left(n+\frac{1}{2}\right) \hbar w$ using raising and lowering operator to $H|n>=E n| n>$.

Either:

4. a) Find the eigen values of J^{2} and J_{4}
b) Derive C. G. coefficients for $\mathrm{j}_{1}=\frac{1}{2}, \mathrm{j}_{2}=1$.

OR

e) Show that
i) $\left[\mathrm{J}_{+}, \mathrm{J}_{-}\right]=2 \hbar \mathrm{~J}_{2}$
ii) $\left[\mathrm{J}_{\mathrm{x}}^{2}, \mathrm{~J}_{\mathrm{y}}^{2}\right]=\left[\mathrm{J}_{\mathrm{y}}^{2}, \mathrm{~J}_{\mathrm{z}}^{2}\right]=\left[\mathrm{J}_{\mathrm{z}}^{2}, \mathrm{~J}_{\mathrm{x}}^{2}\right]$
f) Using addition of two angular momenta, Derive the relation between $\mathrm{m}, \mathrm{m}_{1}$, and m_{2} where the symbols have their usual meanings.
5. Attempt all.
a) State Bohr's correspondence principle and Ehrenfest theorem. 4
b) Show that Hermitian operators have real eigen value.
c) Find the Parity of $\gamma_{\ell}^{\mathrm{m}}(\theta, \phi)$.
d) Find matrix element of J_{x} for $\mathrm{j}=1$.

