M.Sc. First Year (Physics) CBCS Pattern Semester-II

PSCPHYT05 - Core Paper-V - Quantum Mechanics-I

P. Pages : 2

GUG/W/23/11220
Time : Three Hours

Max. Marks : 80

Either :-

1. a) State and prove Ehrenfest's theorem. Explain its importance.
b) State postulates of operator formalism of quantum mechanics.

OR

e) Derive time dependent Schrodinger's equation. Is this equation relativistically invariant Explain.
f) Explain the physical interpretation of wave function and show that the wave function Ψ leads to the continuity equation.

Either:-

2. a) Explain Dirac Notation and derive expression for (i) Heisenberg equation of motion
(ii) Schrodinger equation of motion.
b) State and prove Schwarz inequality. Show how it leads to general uncertainty principle.

OR

e) What is meant by unitary transformation? Derive equation of transformation from one orthonormal basis to another.
f) Define Hermitian operator.
i) Prove that the eigen values of Hermitian operator are real.
ii) Any two eigen functions of Hermitian operator that belongs to different eigen values are orthogonal.

Either:-

3. a) Obtain expression for L^{2} operator in spherical polar coordinates.
b) Evaluate the commutator
i) $\left[x^{2}, P_{x}^{2}\right]$,
ii) $\left[\mathrm{x}^{2}, \mathrm{P}_{\mathrm{x}}^{3}\right]$
iii) $\left[\mathrm{x}^{2}, \frac{\mathrm{~d}}{\mathrm{dx}}\right]$ and $\left[\mathrm{e}^{\mathrm{ix}}, \mathrm{P}_{\mathrm{x}}\right]$

OR

e) Explain the role of L^{2} operators in central force problem.
f) Solve the Schrodinger equation for one dimensional harmonic oscillators and find its energy.

Either :-

4. a) Obtain the Clebsch - Gordan coefficient for a system having $j_{1}=1$ and $j_{2}=1 / 2$
b) Find the eigen values of J^{2} and J_{Z}

OR

e) What are Pauli spin matrices? Show that
i) $\left[\sigma_{x}, \sigma_{y}\right]=2 \mathrm{i} \sigma_{z}$
ii) $\left[\sigma_{y}, \sigma_{z}\right]=2 \mathrm{i} \sigma_{x}$ iii) $\left[\sigma_{z}, \sigma_{x}\right]=2 i \sigma_{y}$
f) Consider J_{1} and J_{2} as two independent angular momenta. Explain how they add together to obtain an angular momenta for the system.
5. Attempt all the followings.
a) How that momentum operator $-\mathrm{i} \hbar \nabla$ is a Hermitian operator.
b) If the wave function for a system is an eigen function of the operator associated with the observable A, show that $\left\langle\mathrm{A}^{\mathrm{n}}\right\rangle=\langle\mathrm{A}\rangle^{\mathrm{n}}$.
c) Discuss in detail the degeneracy of hydrogen atom energy levels.
d) Derive matrices for the operators J^{2}, J_{z}, J_{x} and J_{y} for $j=3 / 2$

