M.Sc. First Year (Physics) CBCS Pattern Semester-II PSCPHYT05 - Core Paper-V - Quantum Mechanics-I

P. P Tim	Pages : ne : Th	2 aree Hours $\star 6 2 4 8 \star$	GUG/W/23/11220 Max. Marks : 80
		Either :-	
1.	a)	State and prove Ehrenfest's theorem. Explain its importance.	8
	b)	State postulates of operator formalism of quantum mechanics.	8
		OR	
	e)	Derive time dependent Schrodinger's equation. Is this equation relativistical Explain.	ly invariant 8
	f)	Explain the physical interpretation of wave function and show that the wave leads to the continuity equation.	function Ψ 8
		Either:-	
2.	a)	Explain Dirac Notation and derive expression for (i) Heisenberg equation of (ii) Schrodinger equation of motion.	f motion 8
	b)	State and prove Schwarz inequality. Show how it leads to general uncertaint	ty principle. 8
		OR	
	e)	What is meant by unitary transformation? Derive equation of transformation orthonormal basis to another.	a from one 8
	f)	 Define Hermitian operator. i) Prove that the eigen values of Hermitian operator are real. ii) Any two eigen functions of Hermitian operator that belongs to differen are orthogonal. 	8 t eigen values
		Either:-	
3.	a)	Obtain expression for L^2 operator in spherical polar coordinates.	8
	b)	Evaluate the commutator	8
		i) $\begin{bmatrix} x^2, P_x^2 \end{bmatrix}$, ii) $\begin{bmatrix} x^2, P_x^3 \end{bmatrix}$ iii) $\begin{bmatrix} x^2, \frac{d}{dx} \end{bmatrix}$ and $\begin{bmatrix} e^{ix}, P_x \end{bmatrix}$	
		OR	
	e)	Explain the role of L^2 operators in central force problem.	8
	f)	Solve the Schrodinger equation for one dimensional harmonic oscillator	rs and find its 8

energy.

Either :-

4.	a)	Obtain the Clebsch – Gordan coefficient for a system having $j_1 = 1$ and $j_2 = 1/2$	
----	----	---	--

b) Find the eigen values of J^2 and J_Z

OR

- e) What are Pauli spin matrices? Show that i) $[\sigma_x, \sigma_y] = 2i\sigma_z$ ii) $[\sigma_y, \sigma_z] = 2i\sigma_x$ iii) $[\sigma_z, \sigma_x] = 2i\sigma_y$
- f) Consider J₁ and J₂ as two independent angular momenta. Explain how they add together 8 to obtain an angular momenta for the system.
- 5. Attempt all the followings.
 - a) How that momentum operator $-i\hbar\nabla$ is a Hermitian operator.
 - b) If the wave function for a system is an eigen function of the operator associated with the observable A, show that $\langle A^n \rangle = \langle A \rangle^n$.

$$\langle A^n \rangle = \langle A \rangle^n.$$

- c) Discuss in detail the degeneracy of hydrogen atom energy levels. 4
- d) Derive matrices for the operators J^2 , J_z , J_x and J_y for j = 3/2

8

8

8

4

4