M.Sc. F.Y. (Physics) CBCS Pattern Semester-I PSCPHYT04 - Core Paper-IV : Electrodynamics-I

P. Pages : 2 Time : Three Hours		2 $GUG/W/23/11182$ ee Hours Max. Marks : 80	GUG/W/23/11182 Max. Marks : 80	
		Either:		
1.	a)	Explain Dirac delta function in detail.	8	
	b)	What is an electric potential? Derive an expression for potential due to a dipole at a point.	8	
		i) On its axis and		
		ii) On equatorial line		
		OR		
	e)	State and explain Gauss law, derive its differential form.	4	
	f)	Derive Poisson and Laplace's equations.	4	
	g)	Derive an expression for electrostatics potential energy.	4	
	h)	Find the field outside a uniformly charged solid sphere of radius r and total charge q.	4	
		Either:		
2.	a)	Using method of images, show that induced charge on an infinite grounded plane, with a point charge 'q' placed at a distance 'd' above it, equal to 'q'.	8	
	b)	Derive an expression for multipole expansion of potential.	8	
		OR		
	e)	Discuss uniqueness theorem in detail.	8	
	f)	State and prove Green's theorem.	8	
		Either:		
3.	a)	State and prove Biot-Savart law.	5	
	b)	What is Ampere's law? Obtain differential form of Ampere's law.	8	
	c)	A long straight wire carries a current of 20 amperes. An electron is travelling at 107m/s. It is 2.0 cm from the wire. What force acts on the electron if its motion is directed.	3	
		i) Towards the wire &		

ii) Parallel to the wire.

	e)	Discuss magnetostatic boundary conditions in details.	8
	f)	Define vector potential in magnetostatic. Explain it to solve magnetic problems.	8
		Either:	
4.	a)	Using Maxwell's equations show that E.M. waves penetrate the conducting media to a depth ' δ '.	8
	b)	Discuss scalar and vector potentials in details.	8
		OR	
	e)	Discuss Maxwell's displacement current.	4
	f)	State and prove Poynting's theorem.	8
	g)	Explain conservation laws for electro-magnetic waves.	4
5.		Answer all of the followings.	
		a) Discuss electric field, for a point charge.	4
		b) Discuss method of separation of variables.	4
		c) Explain magnetic shielding.	4
		d) Write a note on Gauge Transformation.	4
