M.Sc.- I (Computer Science) CBCS Pattern Semester-I

PSCSCT02 - Paper-II : Discrete Mathematics

Time : Three Hours * 6 1 7 0 * Max. Marks : 80

Notes: 1. All questions are compulsory and carry equal marks.

2. Draw neat and labelled diagram and use supporting data wherever necessary.

GUG/W/23/11143

3. Avid vague answer and write specific answer related to question.

Either:

P. Pages: 3

1. a) Show that

i)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

- ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b) Prove following 8

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

by using mathematical induction.

OR

- c) Construct truth table for $(P \leftrightarrow Q) \leftrightarrow (R \leftrightarrow S)$ 8
- d) Obtain the principal disjunctive normal form of $P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P))$

Either:

- 2. a) Prove the extended pigeonhole principle.
 - b) Determine the value of n if

$$i) {}^{n}C_4 = {}^{n}C_3$$

ii)
$${}^{n}C_{n-2} = 10$$

iii)
$$^{20}C_{n+2} = ^{20}C_{2n-1}$$

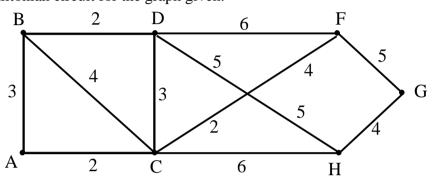
OR

- c) Prove that if $f: X \to Y$ and $g: Y \to Z$ are one to one function, then $g \cdot f$ is one to one.
- d) Let $\alpha = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)\}$ write matrix of R and also it diagram.

Either:

- 3. a) Let $A = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$ be ordered by divisibility. Draw the Hasse diagram of A.
- 8

8


8

b) In a lattice prove that

- i) $(a*b) \oplus (a*c) \le a*[b \oplus (a*c)]$
- ii) $(a+b)*(a\oplus c) \ge a \oplus \lceil b*(a\oplus c) \rceil$

OR

c) Find a Hamiltonian circuit for the graph given.

d) Simplify the following expression.

8

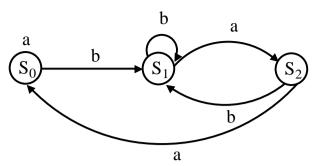
8

- i) $(1*a), \oplus (0*a')$
- ii) $(a*b)'\oplus(a\oplus b)'$
- iii) $(a * b * c) \oplus (a * b * c) \oplus (a * b * c')$

Either:

4. a) Consider the machine m whose table is shown below.

	a	b	c
S_0	S_0	S_0	S_0
S_1	S_2	S_3	S_2
S_2	S_1	S_0	S_3
S_3	S_3	S_2	S_3


Draw digraph of the machine and also find finite state machine and also find transition function.

b) If $(S_1,*)$ and $(S_2,*)$ are semigroups then $(S_1 \times S_2,*)$ is a semigroup, when * is defined by

$$(S_1', S_2')*(S_1'', S_2'') = (S_1'* S_1'', S_2''* S_2'')$$

OR

c) Construct the state transition table of the finite state machine, where diagraph is shown below.

d) Let G be the group each element a in G has only one inverse in G.

8

8

5. Attempt all the questions. a)

4

- Construct the truth table for
 - $(A \oplus B) \oplus C$
 - $(A \uparrow B) \uparrow C$ ii)
- How many distinguishable permutation of the letter is the word BANANA. b)
- 4

Construct the tree. c)

$$((3*(1-x)) \div ((4+7-(y+2)))*(7+(z \div y))$$

4

Define:

d)

- i) Language
- Grammar ii)
- Regular Grammar iii)
- Derivation. iv)
