M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-IV **PSCMTH19 (A) : Core Elective Course : Fluid Dynamics - II**

P. F Tin	ages : ne : Th	2 nree Hour	S * 3 4 7 4 *	GUG/W/22/13770 Max. Marks : 100
	Not	es: 1. 2.	Solve all five questions. All questions carry equal marks.	
			UNIT – I	
1.	a)	Explai	n the stress components in a Real fluid.	10
	b)	Discus	s energy dissipation due to viscosity.	10
			OR	
	c)	Discus	s steady flow through a tube uniform circular cross section.	10
	d)	Derive	the Navier Stokes equation of motion of viscous flow.	10
			UNIT – II	
2.	a)	Discus	s Maxwell's electromagnetic field equation when the medium is at	rest. 10
	b)	Explai	n the magnetic body force.	10
			OR	
	c)	Discus	s about rate of flow of charge.	10
	d)	State tl	he Ferraro's law of isorotation & show that $\frac{\partial(\omega, \Psi)}{\partial(\mathbf{R}, \mathbf{Z})} = 0$.	10
			UNIT – III	
3.	a)	Derive	the integral equation due to Karman.	10
	b)	State &	α prove Buckingham- π Theorem.	10
			OR	
	c)	Derive	Prandtl's boundary layer equation.	10
	d)	Discus	s on Blasius solutions.	10
			UNIT – IV	
4.	a)	Obtain	the equation of motion of a turbulent flow.	10

	c)	Explain the features of the double longitudinal & lateral correlations in a homogeneous turbulence.	10
	d)	Discuss the equation of the conservation of the transferable scalar quantity in turbulent flow.	10
5.	a)	Explain the diffusion of vorticity.	5
	b)	Explain the magnetic Reynold Number.	5
	c)	Explain Dynamical similarity.	5
	d)	Define integral scale of turbulence.	5

OR

10

Explain the Eulerian correlations with respect to time.

b)