Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Show that $u(x)=\cos 2 x$ is solution of the integral equation
$u(x)=\cos x+3 \int_{0}^{x} k(x, t), u(t) d t$
Where $\mathrm{k}(\mathrm{x}, \mathrm{t})= \begin{cases}\sin \mathrm{x} \cos \mathrm{t}, & 0 \leq \mathrm{x} \leq \mathrm{t} \\ \cos \mathrm{x} \sin \mathrm{t}, & \mathrm{t} \leq \mathrm{x} \leq \pi\end{cases}$
b) Obtain an integral equation for the DE $\mathrm{y}^{\prime \prime}-2 \mathrm{xy}=0$ with initial conditions
$\mathrm{y}(0)=\frac{1}{2}, \mathrm{y}^{\prime}(0)=1, \mathrm{y}^{\prime \prime}(0)=1$.

OR

c) Convert $y^{\prime \prime}(x)-3 y^{\prime}(x)+2 y(x)=4 \sin x$ with $y(0)=1, y^{\prime}(0)=-2$ into an Volterra integral equation of $2^{\text {nd }}$ kind.
d) Obtain the integral equation from the $D E \frac{d^{3} y}{d x^{3}}+x \frac{d^{2} y}{d x^{2}}+\left(x^{2}-x\right) y=x e^{x}+1$ with $y(0)=y^{\prime}(0)=1, y^{\prime \prime}(0)=0$.

UNIT - II

2. a) Find the eigen value \& eigen function of the homogeneous integral equation
$u(x)=\lambda \int_{-1}^{1}\left(5 \mathrm{xt}^{3}+4 \mathrm{x}^{2} \mathrm{t}+3 \mathrm{tx}\right) \mathrm{u}(\mathrm{t}) \mathrm{dt}$
b) Solve: $u(x)=x+\lambda \int_{0}^{1}(1+x+t) u(t) d t$

OR

c) Solve the integral equation
$u(x)=f(x)+\lambda \int_{0}^{1}(1-3 x t) u(t) d t$
d) Show that the equation
$u(x)=f(x)+\frac{1}{\pi} \int_{0}^{2 \pi} \sin (x+t) u(t) d t$ possesses no solution for $f(x)=x$ but it possesses infinitely many solutions when $\mathrm{f}(\mathrm{x})=1$.
3. a) State \& prove the Bessel's inequality.

10

b) Show that the set of eigen values of the $2^{\text {nd }}$ iterated Kernel coincide with the set of squares 10

OR

c) Solve: $u(x)=\cos 3 x+\lambda \int_{0}^{\pi} \cos (x+t) u(t) d t$
d) Solve: $u(x)=e^{x}+\lambda \int_{0}^{1}\left(5 x^{2}-3\right) t^{2} u(t) d t$

UNIT - IV

4. a)

Solve the Fredholm equation of second kind $u(x)=2 x+\lambda \int_{0}^{1}(x+t) u(t) d t$ by method of successive approximation by taking $\mathrm{u}_{0}(\mathrm{x})=1$.
b) Solve: $u(x)=f(x)+\frac{1}{2} \int_{0}^{1} e^{x-t} u(t) d t$

OR

c) Solve : $u(x)=\cos x-x-2+\int_{0}^{x}(t-x) u(t) d t$
d) Solve the Volterra integral equation of first kind $f(x)=\int_{0}^{x} e^{x-t} u(t) d t, f(0)=0$
5. a)

Show that $u(x)=1-x$ is a solution of the integral equation $\int_{0}^{x} e^{x-t} u(t) d t=x$.
b) Find C_{1} for the homogeneous integral equation of $2^{\text {nd }}$ kind $u(x)=\lambda \int_{0}^{2 \pi} \sin (x+t) u(t) d t$, in terms of C_{2}.
c) State the Hilbert - Schmidt theorem.
d) Solve the equation $u(x)=1+x-\int_{0}^{x} u(t) d t, u_{0}(x)=1$ by successive approximation method.

