P. Pages: 2

GUG/W/22/13769

Max. Marks: 100

10

Notes : 1.

Solve all five questions. 2. Each question carries equal marks.

UNIT – I

Show that $u(x) = \cos 2x$ is solution of the integral equation 1. a)

 $u(x) = \cos x + 3 \int_{0}^{x} k(x,t), u(t) dt$ Where $k(x,t) = \begin{cases} \sin x \cos t, & 0 \le x \le t \\ \cos x \sin t, & t \le x \le \pi \end{cases}$

Obtain an integral equation for the DE y'' - 2xy = 0 with initial conditions b) 10 $y(0) = \frac{1}{2}, y'(0) = 1, y''(0) = 1.$

OR

Convert $y''(x) - 3y'(x) + 2y(x) = 4 \sin x$ with y(0) = 1, y'(0) = -2 into an Volterra integral c) 10 equation of 2nd kind.

d) 10 Obtain the integral equation from the DE $\frac{d^3y}{dx^3} + x\frac{d^2y}{dx^2} + (x^2 - x)y = xe^x + 1$ with v(0) = v'(0) = 1, v''(0) = 0.

UNIT – II

Find the eigen value & eigen function of the homogeneous integral equation 2. 10 a) $u(x) = \lambda \int_{1}^{1} \left(5x t^{3} + 4x^{2}t + 3tx \right) u(t) dt$ Solve: $u(x) = x + \lambda \int_{0}^{1} (1 + x + t) u(t) dt$ 10 b)

- OR
- Solve the integral equation c)

$u(x) = f(x) + \lambda \int_{0}^{1} (1-3xt) u(t) dt$

d) Show that the equation $u(x) = f(x) + \frac{1}{\pi} \int_{0}^{2\pi} \sin(x+t)u(t) dt$ possesses no solution for f(x) = x but it possesses infinitely many solutions when f(x) = 1.

GUG/W/22/13769

10

10

Time : Three Hours

GUG/W/22/13769

4.

UNIT – III

- State & prove the Bessel's inequality. 3. a)
 - Show that the set of eigen values of the 2nd iterated Kernel coincide with the set of squares b) 10 of the eigen values of the given Kernel.
 - OR

c)
Solve:
$$u(x) = \cos 3x + \lambda \int_{0}^{\pi} \cos(x+t)u(t) dt$$

d)
Solve:
$$u(x) = e^{x} + \lambda \int_{0}^{1} (5x^{2} - 3)t^{2} u(t) dt$$

UNIT - IV

Solve the Fredholm equation of second kind $u(x) = 2x + \lambda \int_{0}^{1} (x+t)u(t) dt$ by method of a) successive approximation by taking $u_0(x) = 1$.

b)
Solve:
$$u(x) = f(x) + \frac{1}{2} \int_{0}^{1} e^{x-t} u(t) dt$$
 10

c)
Solve:
$$u(x) = \cos x - x - 2 + \int_{0}^{x} (t - x)u(t)dt$$

d) Solve the Volterra integral equation of first kind $f(x) = \int_{0}^{x} e^{x-t} u(t) dt$, f(0) = 0

5. a)
Show that
$$u(x) = 1 - x$$
 is a solution of the integral equation
$$\int_{0}^{x} e^{x-t} u(t) dt = x.$$

b)
Find C₁ for the homogeneous integral equation of
$$2^{nd}$$
 kind $u(x) = \lambda \int_{0}^{2\pi} \sin(x+t)u(t)dt$,
in terms of C₂.

State the Hilbert – Schmidt theorem. c)

d)
Solve the equation
$$u(x) = 1 + x - \int_{0}^{x} u(t) dt$$
, $u_0(x) = 1$ by successive approximation method.

2

5

5

10

10

5

10

10

10

10