Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that: The singular integral of $f(x, y, z, p, q)=0$ satisfies the following equations.
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}, \mathrm{q})=0$
$f_{p}(x, y, z, p, q)=0$
$f_{q}(x, y, z, p, q)=0$
b) Find the general integral of

$$
y z p+x z q=x+y
$$

OR

c) Prove that: If $\vec{x} \cdot \operatorname{curl} \vec{x}=0$ where $\vec{x}=(P, Q, R)$ and μ is an arbitrary differentiable function of x, y and z , then

$$
\mu \vec{x} \cdot \operatorname{curl}(\mu \vec{X})=0
$$

d) Solve the equation

$$
\mathrm{z}^{2}+\mathrm{zu}_{\mathrm{z}}-\mathrm{u}_{\mathrm{x}}^{2}-\mathrm{u}_{\mathrm{y}}^{2}=0
$$

by Jacobi's method

UNIT - II

2. a) Find a complete integral of the equation

$$
\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) \mathrm{x}=\mathrm{pz}
$$

and the integral surface containing the curve $C: x_{0}=0, y_{0}=s^{2}, z_{0}=2 s$.
b) Solve $\mathrm{xz}_{\mathrm{y}}-\mathrm{yz}_{\mathrm{x}}=\mathrm{z}$ with the initial condition $\mathrm{z}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}), \mathrm{x} \geq 0$.

OR

c) Consider the P.D.E.
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}, \mathrm{q})=0$
where f has continuous second order derivatives with respect to its variables x, y, z, p and q , and at every point either $\mathrm{f}_{\mathrm{p}} \neq 0$ or $\mathrm{f}_{\mathrm{q}} \neq 0$. Suppose that the initial values $\mathrm{z}=\mathrm{z}_{0}(\mathrm{~s})$ are
specified along the initial curve $\Gamma_{0}: x=x_{0}(s), y=y_{0}(s), a \leq s \leq b$, where $x_{0}(s), y_{0}(s)$ and $z_{0}(s)$ have continuous second order derivatives. Suppose $\mathrm{p}_{0}(\mathrm{~s})$ and $\mathrm{q}_{0}(\mathrm{~s})$ have been determined such that
$\mathrm{f}\left(\mathrm{x}_{0}(\mathrm{~s}), \mathrm{y}_{0}(\mathrm{~s}), \mathrm{z}_{0}(\mathrm{~s}), \mathrm{p}_{0}(\mathrm{~s}), \mathrm{q}_{0}(\mathrm{~s})=0\right.$, and $\frac{\mathrm{dz}_{0}}{\mathrm{ds}}=\mathrm{p}_{0} \frac{\mathrm{dx}_{0}}{\mathrm{ds}}+\mathrm{q}_{0} \frac{\mathrm{dy}_{0}}{\mathrm{ds}}$,
where p_{0} and q_{0} are continuously differentiable functions of S. If, in addition, the five functions $\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}, \mathrm{p}_{0}$ and q_{0} satisfy
$f_{q} \frac{d x_{0}}{d s}-f_{p} \frac{d y_{0}}{d s} \neq 0$,
then prove that in some neighbourhood of each point of the initial curve there exists one and only one solution $\mathrm{z}=\mathrm{z}(\mathrm{x}, \mathrm{y})$ of the give P.D.E. such that
$z\left(\mathrm{x}_{0}(\mathrm{~s}), \mathrm{y}_{0}(\mathrm{~s})\right)=\mathrm{z}_{0}(\mathrm{~s})$
$\mathrm{z}_{\mathrm{x}}\left(\mathrm{x}_{0}(\mathrm{~s}), \mathrm{y}_{0}(\mathrm{~s})\right)=\mathrm{p}_{0}(\mathrm{~s})$
$z_{y}\left(x_{0}(s), y_{0}(s)\right)=q_{0}(s)$
d) Find the solution of the equation
$\mathrm{z}=\frac{1}{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)+(\mathrm{p}-\mathrm{x})(\mathrm{q}-\mathrm{y})$
which passes through the x -axis.

UNIT - III

3. a) Derive a linear one-dimensional wave equation governing small transverse vibrations of string.
b) Reduce the equation $\mathrm{u}_{\mathrm{xx}}-\mathrm{x}^{2} \mathrm{u}_{\mathrm{yy}}=0$ to a canonical form.

OR

c) Obtain D Alembert's solution of the one dimensional wave equation which describes vibrations of an infinite string.
d) Prove that for the equation
$\mathrm{Lu}=\mathrm{u}_{\mathrm{xy}}+\frac{1}{4} \mathrm{u}=0$
the Riemann function is
$v(x, y ; \alpha, \beta)=J_{0}(\sqrt{(x-\alpha)(y-\beta)})$,
where J_{0} denotes the Bessel's function of the first kind of order zero.

UNIT - IV

4. a) Suppose that $u(x, y)$ is harmonic in a bounded domain D and is continuous in $\bar{D}=D \cup B$. Then u attains its maximum on the boundary B of D.
b) Show that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson integral formula.

OR

c) State and prove Harnack's theorem.
d) Show that the surfaces.
$x^{2}+y^{2}+z^{2}=c x^{2 / 3}$
can form an equipotential family of surfaces, and find the general form of the potential function.
5. a) Eliminate the parameters a and b from the equation
$z=(x+a)(y+b)$
to find the corresponding P.D.E.
b) Show that there exist a unique solution of $2 z_{x}+y z_{y}=z$ for the initial data curve
$\mathrm{C}: \mathrm{x}_{0}=\mathrm{s}, \mathrm{y}_{0}=\mathrm{s}^{2}, \mathrm{z}_{0}=\mathrm{s}, 1 \leq \mathrm{s} \leq 2$.
c) Define:
i) Second order semi-linear P.D.E.
ii) Regular solution of second order semi-linear P.D.E.
d) Let D be a bounded domain in R^{2}, bounded by a smooth closed curve B . Let $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ be a sequence of functions each of which is continuous on $\bar{D}=D \bigcup B$ and harmonic in D. If $\left\{u_{n}\right\}$ converges uniformly on B, then prove that $\left\{u_{n}\right\}$ converges uniformly on \bar{D}.

