M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-IV **PSCMTH17 : Partial Differential Equations**

	Note	es : 1. Solve all five questions. 2. All questions carry equal marks.	
		UNIT – I	
l.	a)	Prove that : The singular integral of $f(x, y, z, p, q) = 0$ satisfies the following equations.	10
		f(x, y, z, p, q) = 0	
		$f_{p}(x, y, z, p, q) = 0$	
		$f_q(x, y, z, p, q) = 0$	
	b)	Find the general integral of $yzp + xzq = x + y$	10
		OR	
	c)	Prove that: If $\overrightarrow{x} \cdot \operatorname{curl} \overrightarrow{x} = 0$ where $\overrightarrow{x} = (P, Q, R)$ and μ is an arbitrary differentiable function of x, y and z, then $\overrightarrow{\mu x} \cdot \operatorname{curl} \left(\overrightarrow{\mu X} \right) = 0.$	10
	d)	Solve the equation $z^2 + zu_z - u_x^2 - u_y^2 = 0$ by Jacobi's method	10
		UNIT – II	
2.	a)	Find a complete integral of the equation $(p^2 + q^2)x = pz$	10
		and the integral surface containing the curve $C: x_0 = 0, y_0 = s^2, z_0 = 2s$.	
	b)	Solve $xz_y - yz_x = z$ with the initial condition $z(x,0) = f(x), x \ge 0$.	10
		OR	
	c)	Consider the P.D.E. f(x, y, z, p, q) = 0	10

where f has continuous second order derivatives with respect to its variables x, y, z, p and q, and at every point either $f_p \neq 0$ or $f_q \neq 0$. Suppose that the initial values $z = z_0(s)$ are

P. Pages : 3

1.

2.

Time : Three Hours

GUG/W/22/13768

Max. Marks: 100

specified along the initial curve $\Gamma_0: x = x_0(s), y = y_0(s), a \le s \le b$, where $x_0(s), y_0(s)$ and $z_0(s)$ have continuous second order derivatives. Suppose $p_0(s)$ and $q_0(s)$ have been determined such that

f $(x_0(s), y_0(s), z_0(s), p_0(s), q_0(s) = 0$, and $\frac{dz_0}{ds} = p_0 \frac{dx_0}{ds} + q_0 \frac{dy_0}{ds}$,

where p_0 and q_0 are continuously differentiable functions of S. If, in addition, the five functions x_0 , y_0 , z_0 , p_0 and q_0 satisfy

$$f_q \frac{dx_0}{ds} - f_p \frac{dy_0}{ds} \neq 0,$$

then prove that in some neighbourhood of each point of the initial curve there exists one and only one solution z = z(x, y) of the give P.D.E. such that

$$z(x_0(s), y_0(s)) = z_0(s)$$

 $z_x(x_0(s), y_0(s)) = p_0(s)$
 $z_y(x_0(s), y_0(s)) = q_0(s)$

d) Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y)$ which passes through the x-axis.

UNIT – III

- **3.** a) Derive a linear one-dimensional wave equation governing small transverse vibrations of **10** string.
 - b) Reduce the equation $u_{xx} x^2 u_{yy} = 0$ to a canonical form. 10

OR

- c) Obtain D Alembert's solution of the one dimensional wave equation which describes 10 vibrations of an infinite string.
- d) Prove that for the equation

$$Lu = u_{xy} + \frac{1}{4}u = 0$$

the Riemann function is

 $v(x, y; \alpha, \beta) = J_0(\sqrt{(x-\alpha)(y-\beta)}),$

where J_0 denotes the Bessel's function of the first kind of order zero.

$\mathbf{UNIT} - \mathbf{IV}$

4. a) Suppose that u (x, y) is harmonic in a bounded domain D and is continuous in $\overline{D} = D \bigcup B$. 10 Then u attains its maximum on the boundary B of D.

10

10

b) Show that the solution for the Dirichlet problem for a circle of radius a is given by the **10** Poisson integral formula.

OR

c)	State and prove Harnack's theorem.	10
d)	Show that the surfaces. $x^2 + y^2 + z^2 = cx^{2/3}$ can form an equipotential family of surfaces, and find the general form of the potential function.	10
a)	Eliminate the parameters a and b from the equation z = (x+a)(y+b) to find the corresponding P.D.E.	5
b)	Show that there exist a unique solution of $2z_x + yz_y = z$ for the initial data curve C: $x_0 = s$, $y_0 = s^2$, $z_0 = s$, $1 \le s \le 2$.	5
c)	 Define: i) Second order semi-linear P.D.E. ii) Regular solution of second order semi-linear P.D.E. 	5
d)	Let D be a bounded domain in \mathbb{R}^2 , bounded by a smooth closed curve B. Let $\{u_n\}$ be a sequence of functions each of which is continuous on $\overline{D} = D \bigcup B$ and harmonic in D. If $\{u_n\}$ converges uniformly on B, then prove that $\{u_n\}$ converges uniformly on \overline{D} .	5

5.