P. Pages: 2

Time : Three Hours

Notes :1.Solve all **five** questions.2.Each question carries equal marks.

UNIT – I

- 1. a) Let the function $f: w \to E$ be c^1 . Then prove that f is locally Lipschitz.
 - b) Let $W \subset E$ be open and suppose $f: W \to E$ has Lipschitz constant K. Let y(t), z(t) be 10 solutions to $x^1 = f(x)$ on the closed interval $[t_0, t_1]$. Then prove that for all $t \in [t_0, t_1]$: $|y(t) - z(t)| \le |y(t_0) - z(t_0)| \exp(k(t - t_0))$.

OR

- c) Let a c^1 map $f: W \to E$ be given. Suppose two solutions u(t), v(t) of $x^1 = f(x)$ are defined on the same open interval J containing t_0 and satisfy $u(t_0) = v(t_0)$. Then prove that u(t) = v(t) for all $t \in J$.
- d) Prove that \oint_t sends U on to an open set V and \oint_{-t} is defined on V and sends V onto U. 10 The composition $\oint_{-t} \oint_t$ is the identity map of U, the composition $\oint_t \oint_{-t}$ is the identity map of V.

UNIT – II

- 2. a) Let $W \subset E$ be open and $f: W \to E$ continuously differentiable. Suppose 10 $f(\bar{x}) = 0$ and \bar{x} is a stable equilibrium point of the equation $x^1 = f(x)$. Then prove that no eign value of $Df(\bar{x})$ has positive real part.
 - b) Prove that E* is isomorphic to E and thus has the same dimension.

OR

- c) Let E be a real vector space with an inner product and let T be a self adjoint operator on E. 10
 Then prove that the eigen values of T are real.
- d) Let E be a real vector space with an inner product. Then prove that any self-adjoint operator 10 on E can be diagonalized.

UNIT – III

3. a) Prove that a non empty compact limit set of a C^1 planar dynamical system, which contains no equilibrium point, is a closed orbit.

10

10

b) Define a limit cycle. Let γ be a closed orbit enclosing an open set U contained in the domain **10** w of the dynamical system. Then prove that U contains an equilibrium.

OR

- c) Show that every trajectory of the Volterra-Lotka equation x' = (A By)x, $y' = (C_x D)y$, 10 where A, B, C, D > 0 is a closed orbit. (except the equilibrium z and the coordinate axes)
- d) Prove that The flow \oint_t of x' = M(x, y)x, y' = N(x, y)y, where the growth rates M and N are C¹ functions of non negative variables x, y has the following property: for all $p = (x, y), x \ge 0, y \ge 0$, the limit $\lim_{t \to \infty} \oint_t (p)$ exists & is one of a finite number of

equilibria.

UNIT – IV

- 4. a) Let \overline{x} be a fixed point of a discrete dynamical system $g: W \to E$. If the eigen values of 10 $Dg(\overline{x})$ are less than 1 in absolute value, Then prove that \overline{x} is asymptotically stable.
 - b) Let γ be an asymptotically stable closed orbit of period λ . Then prove that γ has a **10** neighborhood $U \subset W$ such that every point of U has asymptotic period λ .

OR

c) Let $W \subset E$ be open and let $f: W \to E$ be $C^r, 1 \le r \le \infty$. Then prove that the flow $\phi: \Omega \to E$ of the differential equation x' = f(x) is also C^r .

d) Assume E is normed. Let $r > \|Df(x_0)^{-1}\|$. Let $V \subset W$ be an open ball around x_0 such that $\|Df(y)^{-1}\| < v$ and $\|Df(y) - Df(z)\| < \frac{1}{r}$ for all $y, z \in V$ Then prove that F/V is one-to-one.

- 5. a) Explain the flow of a differential equation.
 - b) Define-i) Stabilityii) Asymptotic stabilityiii) Instability
 - iv) Equilibrium point v) Sink
 - c) If x and z are on the same trajectory, then show that $L_w(x) = L_w(z)$, similarly for 5 α -limits.
 - d) Explain asymptotic stability of closed orbits.

5

5

5