M.Sc.(Mathematics) (New CBCS Pattern) Semester - III

PSCMTH15(A) - Optional : Operations Research-I

Time : Three Hours

| Max. Marks : 100

Notes: 1. Solve all the **five** questions.

2. All questions carry equal marks.

UNIT - I

1. a) Explain the simplex algorithm.

P. Pages: 3

10

GUG/S/23/13763

10

10

b) Find the maximum value of $z = 107x_1 + x_2 + 2x_3$ Subject to the constraints: $14x_1 + x_2 - 6x_3 + 3x_4 = 7,16x_1 + x_2 - 6x_3 \le 5,$ $3x_1 - x_2 - x_3 \le 0, x_1, x_2, x_3, x_4 \ge 0$

OR

- c) Write the dual of LPP: Minimize $z = 3x_1 2x_2 + 4x_3$ Subject to the constraints: $3x_1 + 5x_2 + 4x_3 \ge 7$, $6x_1 + x_2 + 3x_3 \ge 4$, $7x_1 - 2x_2 - x_3 \le 10$ $x_1 - 2x_2 + 5x_3 \ge 3$, $4x_1 + 7x_2 - 2x_3 \ge 2$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$
- d) Use duality to solve the LPP: $z = 2x_1 + x_2$ subject to the constraints: $x_1 + 2x_2 \le 10, x_1 + x_2 \le 6, x_1 x_2 \le 2, x_1 2x_2 \le 1, x_1, x_2 \ge 0$

UNIT - II

2. a) Obtain the optimum basic feasible solution to the following degenerate transportation problem.

			Warel	ouse		
			D_2			_
	01	23	27	16	18	30
Factory	02	12	17	20	51	30 40 Availability
	03	22	28	12	32	53
Requirement		22	35	25	41	123

b) For the transportation problem given below, find a basic feasible solution by North -West corner method.

Factories		Wa	Availability			
	\mathbf{W}_{1}	W_2	W_3	W_4	W_5	
F ₁	20	28	32	55	70	50
F ₂	48	36	40	44	25	100
F ₃	35	55	22	45	48	150
Requirement	100	70	50	40	40	

OR

c) Solve the assignment problem:

	A	В	C	D
I	1	4	6	3
II	9	7	10	9
Ш	4	5	11	7
IV	8	7	8	5

d) Obtain an initial basic feasible solution to the transportation problem using the Vogel's approximation method.

10

10

10

10

10

		Stores				
		I	II	Ш	IV	_
Warehouse	A	5	1	3	3	34
	В	3	1 3	5	4	15 Availability
w arenouse	C	6	4	4		12
	D	4	-1	4	2	19
		21	25	17	17	80
Requirement						

UNIT - III

3. a) Maximize $z = y_1y_2y_3 - \cdots - y_n$ subject to the constraints $y_1 + y_2 + \cdots + y_n = c \& y_1 \ge 0$.

b) Use dynamic programming to solve the LPP:

Maximize $z = 3x_1 + 5x_2$ subject to

$$x_1 \le 4, x_2 \le 6, 3x_1 + 2x_2 \le 18 \& x_1, x_2 \ge 0$$

OR

c) Use dynamic programming to solve the LPP:

Minimize $z = y_1^2 + y_2^2 + y_3^2$ subject to

$$y_1 + y_2 + y_3 \ge 15 \& y_1, y_2, y_3 \ge 0$$

d) Discuss the characteristics of the dynamic programming.

UNIT - IV

4. a) Solve the following game whose pay off matrix is given by

b) Solve the 2×2 game graphically.

OR

c) For what value of μ the game with pay off matrix is strictly determinable?

10

10

d) Solve the problem graphically.

10

5

5

5

5. a) Obtain the basic feasible solution to the system.

$$x_1 + 2x_2 + x_3 = 4, 2x_1 + x_2 + 5x_3 = 5$$

b) Explain the assignment problem.

c) Discuss the characteristics of dynamic programming.

5

- d) Define:
 - i) Pure strategy.
 - ii) Mixed strategy.
