M.Sc. (Mathematics) (CBCS / NEW CBCS Pattern) Sem-III PSCMTH15 (A) / PSCMTHT15-1 - Optional : Operations Research -I

P. Pages : 4 Time : Three Hours			Hour	s	. 3 4 6 7 ★	GUG/W/22/13763 Max. Marks : 100	
	Note	es :	1. 2.	Solve all the five question Each question carry equal	s. marks.		
					UNIT – I		
1.	a)	Us M Su	se sin ax. Z ibject 22 22 22 x	The plex method to solve $Z = 4x_1 + 10 x_2$ The to the constraints $x_1 + x_2 \le 50,$ $x_1 + 5x_2 \le 100$ $x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0$		10	
	b)	Us M Su	se two ax Z ibject 22 3x x ₁	to phase simplex method to s = $3x_1 + 2x_2$ a to constraints $x_1 + x_2 \le 2$ $x_1 + 4x_2 \ge 12$ $x_1, x_2 \ge 0$	olve	10	
					OR		
	c)	Us M Su	se dua inimi ibject x_1 x_2 x_3 x_1 x_2	ality to solve the L.P.P. ze $Z = 2x_1 + x_2$ to the constraints $+2x_2 \le 10$ $+x_2 \le 6$ $-x_2 \le 2$ $-2x_2 \le 1$ $x_2 \ge 0$		10	

d) Obtain the dual of LPP & Solve: Minimize $Z = 15x_1 + 10x_2$ Subject to the constraints $3x_1 + 5x_2 \ge 5$ $5x_1 + 2x_2 \ge 3$ $x_1, x_2 \ge 0$

2. a) Determine an Initial basic feasible solution to the following T.P. by using N – W corner 10 rule.

	D ₁	D ₂	D3	D 4	Availability
O ₁	5	3	6	2	19
O ₂	4	7	9	1	37
O ₃	3	4	7	5	34
Demand	16	18	31	25	

b) Consider the problem of Assignment jobs to five person. The assignment costs are given as follows

		Jobs				
		1	2	3	4	5
	A	8	4	2	6	1
	В	0	9	5	5	4
Person	C	3	8	9	2	6
	D	4	3	1	0	3
	E	9	5	8	9	5

OR

c) Obtain an initial basic feasible solution to the following T.P. using the Vogel's Approximation method.

d) Determine an initial basic feasible solution to the following T.P. using the column minima **10** method.

		То		_
	16	19	12	14
From	22	13	19	16 Availability
	14	28	8	12
	10	15	17	-
	Re	quireme	ent	

GUG/W/22/13763

10

UNIT – III

3. a) Use dynamic programming to solve the following L.P.P. Minimize $Z = 3x_1 + 5x_2$ Subject to the constraints $x_1 \le 4, x_2 \le 6$ $3x_1 + 2x_2 \le 18$ $x_1, x_2 \ge 0$

b) Write the characteristics of Dynamic programming.

OR

- c) Use the dynamic programming to show that $Z = P_1 \log P_1 + P_2 \log P_2 + \dots + P_n \log P_n$ Subject to the constraints $P_1 + P_2 + \dots + P_n = 1 \text{ and } P_1 \ge 0 \text{ (i = 1, 2, ..., n)}$ is minimum when $P_1 = P_2 = \dots = P_n = \frac{1}{n}$
- d) Use dynamic programming to solve the LPP: Maximize: $Z = x_1 + 9x_2$ Subject to constraints $2x_1 + x_2 \le 25$ $x_2 \le 11$ $x_1, x_2 \ge 0$
 - UNIT IV
- **4.** a) Solve the following 2×2 game graphically.

Player B

$$B_1 \ B_2 \ B_3 \ B_4$$

Player A $A_1 \begin{bmatrix} 2 & 1 & 0 & -2 \\ 1 & 0 & 3 & 2 \end{bmatrix}$

b) Solve the following game whose pay off matrix is given by

Player B
H T
Player A
$$\begin{array}{c} H & T \\ H & 8 & -3 \\ T & -3 & 1 \end{array}$$

P.T.O

10

10

10

10

10

c) For what values of the game with following payoff matrix is strictly determinable?

	B_1	B_2	B ₃
A_1	μ	6	2
Player A A_2	1	μ	-7
A ₃	-2	4	μ

d) Solve the following 2 x 4 game graphically.

		Player B			
		B_1	B_2	B_3	B_4
	$A_{1} \\$	2	1	0	-2
Player A	A_2	1	0	3	2

5. a) Formulate the dual of the LPP: Maximize $Z = 5x_1 + 3x_2$ Subject to $3x_1 + 5x_2 \le 15$ $5x_1 + 2x_2 \le 10$

$$x_1, x_2 \ge 0$$

b) Define assignment problem.
c) Write the dynamic programming algorithm.
d) What is game theory? What are the various types of games?
5

10