M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-III

PSCMTH14 (B) / MSCMTH14 (B) - Optional Paper: General Relativity-I

P. Pages: 2 GUG/W/22/13759 Time: Three Hours Max. Marks: 100 Notes: 1. Solve all **five** questions. 2. All questions carry equal marks. UNIT - I **10** 1. a) Let A^r, B^r be arbitrary contravariant vectors & $a_{rs} A^r B^s$ be an invariant. Then show that a_{rs} are the components of a covariant tensor of the 2^{nd} order. Prove that $\lceil \frac{m}{mn} = (\log \sqrt{g}), n \rceil$ **10** b) OR **10** c) Prove that $\frac{\delta T^r}{\delta u}$ is a contravariant vector. State & prove the Bianchi identity. d) **10** UNIT - II 2. Explain the principle of equivalence. 10 a) **10** b) Obtain T^{mn} for incoherent matter distribution. OR Obtain energy momentum tensor for electromagnetic field. **10** c) d) Obtain the relation between g44 & V. 10 UNIT - III Obtain $R_{11} & R_{22}$ for the line element **3.** 10 $ds^2 = -e^A dr^2 - r^2 \left(d\theta^2 + sin^2 \, \theta d\varphi^2 \right) + e^B dt^2$ where A & B are functions of r alone. Obtain the equation for planetary motion. 10 b) OR Explain Advance of perihelion of Mercury with mathematical formulation. 10 c)

	d)	Using mathematical formulation explain gravitational red shift.	10
		$\mathbf{UNIT} - \mathbf{IV}$	
4.	a)	Obtain the derivation of linearization of field equations.	10
	b)	Obtain the spherically symmetric solutions of linearized field equations.	10
		OR	
	c)	Obtain the weyl solution.	10
	d)	Explain Associated weyl solution.	10

10

Show that covariant derivatives of 9mm, $9^{mm}~\&~\delta^m_n$ vanish. **5.** 5

Show that $R_n^m = -k \left(T_n^m - \frac{1}{2} T \delta_n^m \right)$ b) 5

Write the classical tests of general relativity. 5 c)

Write a short note on Gravitation waves. 5 d)
