Notes : 1. Solve all the five questions.
2. Each question carry equal marks.

UNIT - I

1. a) State \& prove the modulation theorem for the Fourier transform.
b) Find the Fourier transform of

$$
f(x)=\left\{\begin{array}{cl}
1-x^{2}, & |x| \leq 1 \\
0, & |x|>1
\end{array} \& \text { hence evaluate } \int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x\right.
$$

c) State \& prove the convolution theorem for the Fourier transform.
d) Find the Fourier sine transform of $f(x)=\frac{1}{x\left(x^{2}+a^{2}\right)}$

UNIT - II

2. a)

Solve the wave equation $\frac{\partial^{2} u}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}, 0 \leq \mathrm{x} \leq \mathrm{a}, \mathrm{t}>0$ satisfying the boundary condition $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(\mathrm{a}, \mathrm{t})=0, \mathrm{t}>0$ \& the initial condition $\mathrm{u}(\mathrm{x}, 0)=\frac{4 \mathrm{~b}}{\mathrm{a}^{2}} \mathrm{x}(\mathrm{a}-\mathrm{x}), \frac{\partial \mathrm{u}(\mathrm{x}, 0)}{\partial \mathrm{t}}=0,0 \leq \mathrm{x} \leq \mathrm{a}$ to determine the displacement $\mathrm{u}(\mathrm{x}, \mathrm{t})$.
b) The transverse displacement of elastic membrane $u(x, y, t)$ satisfies the $\operatorname{PDE} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}=\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}$, under the boundary conditions $\mathrm{u}=0$ on the boundary, $\mathrm{u}=\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{ut}=\mathrm{g}(\mathrm{x}, \mathrm{y})$ at $\mathrm{t}=0$. Find the displacement $\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ after utilizing finite Fourier transform.

OR

c) Let $\mathrm{f}(\mathrm{x})$ be continuous \& $\mathrm{f}^{\prime}(\mathrm{x})$ be sectionally continuous on the interval $0 \leq \mathrm{x} \leq$ a then show that
i) $\quad \overline{\mathrm{f}}_{\mathrm{c}}\left[\mathrm{f}^{\prime}(\mathrm{x}), \mathrm{x} \rightarrow \mathrm{n}\right]=(-1)^{\mathrm{n}} \mathrm{f}(\mathrm{a})-\mathrm{f}(0)+\frac{\mathrm{n} \pi}{\mathrm{a}} \overline{\mathrm{f}}_{\mathrm{s}}(\mathrm{n}), \mathrm{n} \in \mathrm{Z}^{*}$
ii) $\quad \overline{\mathrm{f}}_{\mathrm{S}}\left[\mathrm{f}^{\prime}(\mathrm{x}), \mathrm{x} \rightarrow \mathrm{n}\right]=-\frac{\mathrm{n} \pi}{\mathrm{a}} \overline{\mathrm{f}}_{\mathrm{c}}(\mathrm{n}), \mathrm{n} \in \mathrm{N}$
d) The temperature $\mathrm{u}(\mathrm{x}, \mathrm{t})$ at any point x at any time t in a solid bounded by planes $\mathrm{x}=0$ \& $x=4$ satisfies the heat condition equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$, when the and faces $x=0 \& x=4$ are kept at zero temperature. Initially the temperature at x is $2 x$ then find $u(x, t)$ for all $x \& t$.

UNIT - III

3. a) State \& prove the first \& second shifting theorems of Laplace transform.
b) If Laplace transform of a piecewise continuous function $f(t)$ is $\bar{f}(p)$ then show that $L\left[t^{n} f(t)\right]=(-1)^{n} \frac{d^{n} \bar{f}(p)}{d p^{n}}, n$ is the integer.

OR

c) Find $L\left[E_{r} f(t) ; t \rightarrow p\right]$ to show that its value is expressed as $\frac{1}{p} e^{p^{2} / 4} \operatorname{Erfc}\left(\frac{1}{2} p\right)$.
d) Evaluate $L^{-1}\left[\frac{1}{\sqrt{p}(p-a)}\right]$ by convolution theorem Hence find $L^{-1}\left[\frac{1}{p \sqrt{p+a}}\right]$

UNIT - IV

4. a) State \& prove the Parseval theorem for the Hankel transform.
b) If $f(x)=\left\{\begin{array}{cc}x^{n}, & x<x<a \\ 0, & x>a\end{array}\right.$

Find the Hankel transform of order n of $f(x)$.

OR

c) State \& prove the convolution theorem of Mellin transform.
d) If $\mathrm{M}\left[\mathrm{f}_{(\mathrm{x})}, \mathrm{x} \rightarrow \mathrm{s}\right]=\mathrm{f}^{*}(\mathrm{~s})$ then prove that:
i) $\quad M\left[\left(x \frac{d}{d x}\right) f(x) ; x \rightarrow s\right]=-s f *(s)$.
ii) $\quad M\left[\left(x \frac{d}{d x}\right)^{2} f(x) ; x \rightarrow s\right]=s^{2} f *(s)$.
iii) $\quad M\left[\left(x \frac{d}{d x}\right)^{n} f(x), x \rightarrow s\right]=(-1)^{n} s^{n} f *(s), n=2,3, \ldots \ldots$.
5. a) State \& prove the linearity property of Fourier transform.
b) Define finite Fourier cosine \& sine transform.
c) State and prove change of scale property of Laplace transform.
d) Define:
i) Hankel transform
ii) Mellin transform

