M.Sc. II (Mathematics) (NEW CBCS Pattern) Sem-III Core Course - PSCMTH13 - Paper-III : Mathematical Methods

P. Pages : 3 Time : Three Hours			$1 \text{ ours} \qquad \begin{array}{c} & & \\ & & \\ & * & 3 & 4 & 6 & 1 & * \end{array}$	GUG/W/22 Max. Mar	GUG/W/22/13757 Max. Marks : 100	
	Not	es :	 Solve all five questions. Each question carries equal marks. 			
			UNIT – I			
1.	a)	Def F[0	fine the Fourier Transforms and If C_1 and C_2 are constants, then $C_1f_1(x) + C_2f_2(x) = C_1F[f_1(x)] + C_2F[f_2(x)]$	show that	10	
	b)	i)	If $F[f(x):x \to \xi] = F(\xi)$, then show that $F[f(ax);x \to \xi] = \frac{1}{a}F\left(\frac{\xi}{a}\right)$		10	
		ii)	If $F_{s}[f(x)] = F_{s}(\xi)$, then prove that $F_{s}[f(ax)] = \frac{1}{a}F_{s}\left(\frac{\xi}{a}\right)$			
			OR			

- c) If $F(\xi)$ is Fourier Transform of f(x) in R, then show that Fourier Transform of f(x-a) 10 is $e^{i\xi a} \cdot F(\xi)$.
- d) Show that $\int_{0}^{\infty} \frac{\cos px}{1+p^2} dp = \frac{\pi}{2} e^{-x}, x \ge 0$ 10

UNIT – II

- 2. a) Let f(x) be continuous and f'(x) be sectionally continuous on the interval $0 \le x \le a$, 10 then prove that
 - i) $\overline{f}_{c}[f'(x); x \rightarrow n] = (-1)^{n} f(a) f(0) + \frac{n\pi}{a} \overline{f}_{s}(n), n \in \mathbb{Z}^{*}$ ii) $\overline{f}_{s}[f'(x); x \rightarrow n] = \frac{-n\pi}{a} \overline{f}_{c}(n), n \in \mathbb{N}$
 - b) Let f(x) and f''(x) be continuous and f''(x) be sectionally continuous in $0 \le x \le a$. Then **10** prove that

i)
$$\overline{f}_{c}[f''(x);n] = -f'(0) + (-1)^{n} \cdot f'(a) - \frac{n^{2}\pi^{2}}{a^{2}}\overline{f}_{c}(n)$$

ii) $\overline{f}_{s}[f''(x);n] = \frac{n\pi}{a}f(0) - (-1)^{n}\frac{n\pi}{a}f(a) - \frac{n^{2}\pi^{2}}{a^{2}}\overline{f}_{s}(n)$

c) Solve the wave equation

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \ 0 \le x \le a, \ t > 0$$

Satisfying the boundary condition u(0,t) = u(a,t) = 0, t > 0 and the initial condition,

$$u(x,0) = \frac{4b}{a^2} x(a-x), \frac{\partial u(x,0)}{\partial t} = 0,$$

 $0 \le x \le a$ to determine the displacement u(x, t).

d) Solve the diffusion equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}, \ 0 < x < a, \ t > 0$$

for its solution satisfying the boundary condition

$$\frac{\partial u(0,t)}{\partial x} = \frac{\partial u(a,t)}{\partial x} = 0, \ t > 0$$

and the initial condition u(x,0) = f(x), $0 \le x \le a$, using proper finite Fourier Transform.

UNIT – III

- 3. a) If the Laplace transform of f(t) is $\overline{f}(p)$, then show that Laplace transform of 10 f(t-a)H(t-a) is $e^{-ap} \cdot \overline{f}(p)$.
 - b) If Laplace transform of a piecewise continuous function f(t) is $\overline{f}(p)$, then show that 10 Laplace transform of $t^n f(t) = (-1)^n \frac{d^n \overline{f}(p)}{dp^n}$, when n is positive integer.

OR

- c) Define the convolution of two functions and evaluate the Laplace transform of the 10 convolution of two functions.
- d) Evaluate

$$L^{-1}\left[\frac{P}{\left(P^2+4\right)^3}\right]$$

by using convolution theorem.

UNIT – IV

4. a) If $\overline{f}_n(\xi)$ be Hankel transform of order n of f (r), then prove that Hankel transform of **10** order n of

$$f''(r) + \frac{1}{r}f'(r) - \frac{n^2}{r^2}f(r)$$
 is $-\xi^2 \bar{f}_n(\xi)$

provided that $rf'(r) \rightarrow 0$ and $rf(r) \rightarrow 0$ when $r \rightarrow 0$ and when $r \rightarrow \infty$.

10

10

5.

a)
$$H_1\left[\frac{e^{-ay}}{x};\xi\right]$$

b) $H_0\left[\frac{1}{x};\xi\right]$

OR

c)	State and prove the convolution theorem of Mellin Transform.	10
d)	Find the following Mellin transform of derivative of a function i) $M[f'(x); x \rightarrow s] = -(s-1)f^*(s-1)$ ii) $M[f''(x); x \rightarrow s] = (s-1)(s-2)f^*(s-2)$	10
a)	Find the Fourier transform $f(x) = e^{-a x }, a > 0$	5
b)	Define the Finite Fourier Cosine and Sine transforms.	5
c)	Find the Laplace transform of sinax.	5
d)	Find the Hankel transform of order zero of $f(x) = \begin{cases} 1, & 0 < x < a \\ 0, & x > a \end{cases}$	5
