Time : Three Hours

Notes: 1. All five questions are compulsory.
2. Each question carries equal marks.

UNIT - I

1. a) Let M be a linear subspace of a normed linear space N, and let f be a functional defined on M. If x_{0} is a vector not in M, and if $M_{0}=M+\left[x_{0}\right]$ is the linear subspace spanned by M \& x_{0}, then prove that f can be extended to a functional f_{0} defined on M_{0} such that $\left\|\mathrm{f}_{0}\right\|=\|\mathrm{f}\|$.
b) If M is a closed linear subspace of a normed linear space N and x_{0} is a vector not in M , then prove that there exists a functional f_{0} in N^{*} such that $f_{0}(M)=0$ and $f_{0}\left(x_{0}\right) \neq 0$.

OR

c) Let N \& N^{\prime} be normed linear spaces and T a linear transformation of N into N^{\prime}. Then prove that the following conditions on T are all equivalent to one another:
i) T is continuous;
ii) T is continuous at the origin, in the sense that $\mathrm{x}_{\mathrm{n}} \rightarrow 0 \Rightarrow \mathrm{~T}\left(\mathrm{x}_{\mathrm{n}}\right) \rightarrow 0$;
iii) There exists a real number $K \geq 0$ with the property that $\|T(x)\| \leq K\|x\|$ for every $x \in N$;
iv) If $\mathrm{S}=\{\mathrm{x}:\|\mathrm{x}\| \leq \perp\}$ is the closed unit sphere in N , then its image $\mathrm{T}(\mathrm{S})$ is a bounded set in N^{\prime}
d) Let M be a linear subspace of a normed linear space N , and let F be a functional defined on M . Then prove that F can be extended to a functional F_{o} defined on the whole space N such that $\left\|\mathrm{F}_{0}\right\|=\|\mathrm{F}\|$
UNIT - II
2. a) Prove that a closed convex subset C of a Hilbert space. H contains a unique vector of smallest norm.
b) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a non - zero vector Z_{o} in H such that $\mathrm{Z}_{\mathrm{o}} \perp \mathrm{M}$

OR

c) If B \& B' are Banach spaces and if T is a linear transformation of B into B', then prove that T is continuous iff its graph is closed.
d) If $\mathrm{M} \& \mathrm{~N}$ are closed linear subspaces of a Hilbert space H such that $\mathrm{M} \perp \mathrm{N}$, then prove that the linear subspace $\mathrm{M}+\mathrm{N}$ is also closed.
3. a) Prove that the adjoint operation $T \rightarrow T^{*}$ on $\mathrm{B}(\mathrm{H})$ has the following properties:
i) $\quad(\alpha \mathrm{T})^{*}=\bar{\alpha} \mathrm{T}^{*}$
ii) $\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}=\mathrm{T}_{2}{ }^{*} \mathrm{~T}_{1}{ }^{*}$
iii) $\left\|\mathrm{T}^{*}\right\|=\|\mathrm{T}\|$
iv) $\left\|T^{*} T\right\|=\|T\|^{2}$
b) If P is a projection on H with range M is null space N , then prove that $\mathrm{M} \perp \mathrm{Niff} \mathrm{P}$ is self - adjoint; and in this case, $\mathrm{N}=\mathrm{M}^{\perp}$.

OR

c) If T is an operator on H , then prove that T is normal iff its real and imaginary parts commute.
d) If T is an operator on H for which $(\mathrm{Tx}, \mathrm{x})=0$ for all x , then prove that $\mathrm{T}=0$.

UNIT - IV

4. a) If $B=\left\{e_{i}\right\}$ is a basis for H, then prove that the mapping $T \rightarrow[T]$, which assigns to each operator T its matrix relative to B, is an isomorphism of the algebra $B(H)$ onto the total matrix algebra A_{n}.
b) Prove that two matrices in A_{n} are similar iff they are the matrices of a single operator on H relative to (possibly) different bases.

OR

c) Let B be a basis for H, and T an operator whose matrix relative to B is $\left[\alpha_{i j}\right]$. Then prove that T is non-singular iff $\left[\alpha_{i j}\right]$ is non - singular $\&$ in this case $\left[\alpha_{i j}\right]^{-1}=\left[T^{-1}\right]$
d) State \& prove the spectral theorem.
a) Define:
5. a) Define:
i) Bounded linear transformation.
ii) Banach space.
b) Define:
i) Orthogonal set.
ii) Orthogonal complement of a set.
c) If P is the projection on a closed linear subspace M of H, then prove that M is invariant under an operator $\mathrm{T} \Leftrightarrow \mathrm{TP}=\mathrm{PTP}$.
d) Explain matrix representation of a linear operator on a vector space.

