P. Pages: 2

Time : Three Hours

GUG/S/23/13756

Max. Marks: 100

Notes : 1. All **five** questions are compulsory. 2. Each question carries equal marks.

UNIT – I

- 1. a) Let M be a linear subspace of a normed linear space N, and let f be a functional defined on M. If x_0 is a vector not in M, and if $M_0 = M + [x_0]$ is the linear subspace spanned by M & x_0 , then prove that f can be extended to a functional f_0 defined on M_0 such that $\|f_0\| = \|f\|$.
 - b) If M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M, **10** then prove that there exists a functional f_0 in N* such that $f_0(M) = 0$ and $f_0(x_0) \neq 0$.

OR

- c) Let N & N' be normed linear spaces and T a linear transformation of N into N'. Then prove **10** that the following conditions on T are all equivalent to one another:
 - i) T is continuous;
 - ii) T is continuous at the origin, in the sense that $x_n \rightarrow 0 \Rightarrow T(x_n) \rightarrow 0$;
 - iii) There exists a real number $K \ge 0$ with the property that $||T(x)|| \le K ||x||$ for every $x \in N$;
 - iv) If $S = \{x : ||x|| \le \bot\}$ is the closed unit sphere in N, then its image T(S) is a bounded set in N'
- d) Let M be a linear subspace of a normed linear space N, and let F be a functional defined 10 on M. Then prove that F can be extended to a functional F_0 defined on the whole space N such that $||F_0|| = ||F||$

UNIT – II

- **2.** a) Prove that a closed convex subset C of a Hilbert space. H contains a unique vector of **10** smallest norm.
 - b) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a 10 non zero vector Z_0 in H such that $Z_0 \perp M$

OR

- c) If B & B' are Banach spaces and if T is a linear transformation of B into B', then prove 10 that T is continuous iff its graph is closed.
- d) If M & N are closed linear subspaces of a Hilbert space H such that $M \perp N$, then prove 10 that the linear subspace M + N is also closed.

UNIT – III

10

5

3. a) Prove that the adjoint operation $T \to T^*$ on B(H) has the following properties:

- i) $(\alpha T)^* = \overline{\alpha} T^*$
- ii) $(T_1T_2)^* = T_2^*T_1^*$
- iii) $\|\mathbf{T}^*\| = \|\mathbf{T}\|$
- iv) $||T^*T|| = ||T||^2$
- b) If P is a projection on H with range M is null space N, then prove that $M \perp N$ iff P is self adjoint; and in this case, $N = M^{\perp}$.

OR

- c) If T is an operator on H, then prove that T is normal iff its real and imaginary parts 10 commute.
- d) If T is an operator on H for which (Tx, x) = 0 for all x, then prove that T = 0. 10

$\mathbf{UNIT} - \mathbf{IV}$

- 4. a) If $B = \{e_i\}$ is a basis for H, then prove that the mapping $T \rightarrow [T]$, which assigns to each operator T its matrix relative to B, is an isomorphism of the algebra B(H) onto the total matrix algebra A_n .
 - b) Prove that two matrices in A_n are similar iff they are the matrices of a single operator on **10** H relative to (possibly) different bases.

OR

c)	Let B be a basis for H, and T an operator whose matrix relative to B is $\left[\alpha_{ij}\right]$. Then prove	10
	that T is non-singular iff $\begin{bmatrix} \alpha_{ij} \end{bmatrix}$ is non – singular & in this case $\begin{bmatrix} \alpha_{ij} \end{bmatrix}^{-1} = \begin{bmatrix} T^{-1} \end{bmatrix}$	
d)	State & prove the spectral theorem.	10
a)	Define: i) Bounded linear transformation. ii) Banach space.	5
b)	Define:	5

- b) Define:i) Orthogonal set.ii) Orthogonal complement of a set.
- c) If P is the projection on a closed linear subspace M of H, then prove that M is invariant 5 under an operator $T \Leftrightarrow TP = PTP$.
- d) Explain matrix representation of a linear operator on a vector space.

5.