P. Pages: 2

Time : Three Hours

* 3 4 6

GUG/W/22/13756 Max. Marks : 100

Notes : 1. Solve all **five** questions.

2. Each questions carries equal mark

compact Hausdorff space in the weak topology.

UNIT – I

- 1. a) Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x + M 10 in the quotient space N/M is defined by $||x + M|| = \inf \{||x + m|| : m \in M\}$ then prove that N/M is a normed linear space.
 - b) If M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M, **10** then prove that there exists a functional f_0 in N^{*} such that $F_0(M) = 0$ and $F_0(x_0) \neq 0$

OR

c)	State and prove Hahn – Banach theorem.	10
d)	Prove that if N is a normed linear space, then the closed unit sphere S^* in N^* is a	10

UNIT – II

- 2. a) If B and B' are Banach spaces and if T is a continuous linear transformation of B onto B', 10 then prove that T is an open mapping.
 - b) Prove that a non empty subset X of a normed linear space N is bounded $\Leftrightarrow f(X)$ is a 10 bounded set of numbers for each f in N^{*}.

OR

- c) Prove that, a closed convex subset C of a Hilbert space H contains a unique vector of **10** smallest norm
- d) Prove that, if $\{e_i\}i = 1, 2, ---, n$ is an orthonormal set in a Hilbert space H then 10

 $\sum_{i=1}^{n} \left| \left(x, e_{i} \right) \right|^{2} \leq \left\| x \right\|^{2}, \text{ for every vector } x \text{ in } H$

UNIT – III

3. a) Let H be a Hilbert space and let f be a arbitrary functional in H^* . Then prove that there exists a unique vector y in H such that f(x) = (x, y), for every x in H.

b) If T is an operator on H for which (Tx, x) = 0, for all x then prove that T = 0. 10

OR

	c)	If N_1 and N_2 are normal operator on H with the property that either commutes with the adjoint of the other then prove that $N_1 + N_2$ and $N_1 \cdot N_2$ are normal	10	
	d)	If T is an operator on Hilbert space H then prove that, T is normal if and only if its real and imaginary parts commute.	10	
$\mathbf{UNIT} - \mathbf{IV}$				
4.	a)	Let T be an operator on H then prove that if A is nonsingular then $6(ATA^{-1}) = 6(T)$	10	
	b)	If T is normal then prove that the M _i 's are pairwire orthogonal.	10	
		OR		
	c)	If T is normal then prove that M _i 's span H	10	
	d)	Show that an operator T on H is normal if and only if its adjoint T^* is polynomial in T.	10	
5.	a)	Define: i) Normed linear space ii) Banach space.	5	
	b)	Prove that, if $\{e_i\}$ is an orthonormal set in a Hilbert space H and if x is any vector in H then the set $S = \{e_i : (x, e_i) \neq 0\}$ is either empty or countable.	5	
	c)	If T_1^* , and T_2^* are adjoint operation of T_1 and T_2 then prove that $(T_1 + T_2)^* = T_1^* + T_2^*$	5	
	d)	Prove that, if T is normal then each M _i reduces T.	5	
