M.Sc. II (Mathematics) (NEW CBCS Pattern) Sem-III
 PSCMTH11: Complex Analysis

P. Pages : 2

GUG/W/22/13755
Time: Three Hours

Max. Marks : 100

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let $f(z)=u(x, y)+i v(x, y)(z=x+i y)$ and $z_{0}=x_{0}+i y_{0}, w_{0}=u_{0}+i v_{0}$. If $\underset{(x, y) \rightarrow\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)}{\lim _{\mathrm{l}}} \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{u}_{0}$ and $\underset{(\mathrm{x}, \mathrm{y}) \rightarrow\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)}{ } \mathrm{V}(\mathrm{x}, \mathrm{y})=\mathrm{V}_{0}$
Then prove that $\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{w}_{0}$, and converse also hold.
b) If $f^{\prime}(z)=0$ everywhere in a domain D, then $f(z)$ must be constant throughout D.

OR

c) Prove that the zeros of $\sin \mathrm{z}$ and $\cos \mathrm{z}$ in the complex plane are the same as the zeros of $\sin \mathrm{x}$ and $\cos \mathrm{x}$ on the real line.
d) Suppose that
i) a function f is analytic throughout a domain D.
ii) $f(z)=0$ at each point z of a domain or line segment contained in D.

Then prove that $f(z) \equiv 0$ in D.

UNIT - II

2. a) If $w(t)$ is a piecewise continuous complex - valued function defined on an interval $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$, then

$$
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t
$$

b) If a function f is analytic throughout a simply connected domain D, then $\int_{c} f(z) d z=0$ for every closed contour C lying in D .

OR

c) If Z_{1} is a point inside the circle of convergence $\left|\mathrm{Z}-\mathrm{Z}_{0}\right|=\mathrm{R}$ of a power series
$\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then prove that the series must be uniformly convergent in the closed disk $\left|\mathrm{z}-\mathrm{z}_{0}\right| \leq \mathrm{R}_{1}$, where $\mathrm{R}_{1}=\left|\mathrm{z}_{1}-\mathrm{z}_{0}\right|$.
d)

Suppose that $z_{n}=x_{n}+i y_{n}(n=1,2, \ldots .$.$) and S=X+i Y$. Then prove that $\sum_{n=1}^{\infty} Z_{n}=S$ if and only if $\sum_{\mathrm{n}=1}^{\infty} \mathrm{x}_{\mathrm{n}}=\mathrm{X}$ and $\sum_{\mathrm{n}=1}^{\infty} \mathrm{y}_{\mathrm{n}}=\mathrm{Y}$.

UNIT - III

3. a) State and prove Cauchy's Residue theorem.
b) Let f denote a function that is analytic at a point z_{0}. Then prove that the following two statements are equivalent :
i) f has a zero of order m at z_{0}.
ii) there is a function g , which is analytic and nonzero at z_{0} such that

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

OR

c) Suppose that a function f is bounded and analytic in some deleted neighborhood $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\in$ of z_{0}. If f is not analytic at z_{0}, then prove that it has a removable singularity there.
d) Use residues to evaluate the integral $\int_{0}^{\infty} \frac{\cos 2 \mathrm{x}}{\left(\mathrm{x}^{2}+4\right)^{2}} \mathrm{dx}=\frac{5 \pi}{32 \mathrm{e}^{4}}$

UNIT - IV

4. a) Show that the mapping $\mathrm{w}=1 / \mathrm{z}$ transforms circles and lines into circles and lines.
b) Find a linear fractional transformation that maps the points $\mathrm{z}_{1}=1, \mathrm{z}_{2}=0$ and $\mathrm{z}_{3}=-1$ onto the points $\mathrm{w}_{1}=\mathrm{i}, \mathrm{w}_{2}=\infty$ and $\mathrm{w}_{3}=1$.

OR

c) Show that the transformation $\mathrm{w}=\sin \mathrm{z}$ is a one to one mapping of the semi-infinite strip $-\pi / 2 \leq \mathrm{x} \leq \pi / 2, \mathrm{y} \geq 0$ in the z plane onto the upper half $\mathrm{v} \geq 0$ of the w plane.
d) Show that the image of the vertical strip $0 \leq x \leq 1, y \geq 0$ under the mapping $w=z^{2}$ is a closed semiparabolic region.
5. a) Show that $\log \left(\mathrm{i}^{2}\right)=2 \log \mathrm{i}$.
b) Prove that the absolute convergence of a series of complex numbers implies the convergence of that series.
c) Define
ii) Essential singular point.
d) Show that the transformation $\mathrm{w}=\mathrm{iz}+\mathrm{i}$ maps the half plane $\mathrm{x}>0$ onto the half plane $\mathrm{v}>1$.

