Notes: 1. Solve all five questions.
2. Each questions carry equal marks.

UNIT - I

1. a) Prove that
i) If ω is the angle between the parametric curves at the point of intersection, then $\tan \omega=\frac{\mathrm{H}}{\mathrm{F}}$.
ii) If ds represents the element of area PQRS on the surface then prove that ds $=$ Hdudv
b) If $\left(\ell^{1}, \mathrm{~m}^{1}\right)$ are the direction coefficients of a line which makes an angle $\frac{\pi}{2}$ with the line whose direction coefficients are (ℓ, m) then prove that-

$$
\ell^{1}=-\frac{1}{\mathrm{H}}(\mathrm{~F} \ell+\mathrm{Gm}), \mathrm{m}^{1}=\frac{1}{\mathrm{H}}(\mathrm{E} \ell+\mathrm{Fm})
$$

OR

c) Show that the curves bisecting the angle between the parametric curves are given by $E d u^{2}-\mathrm{Gdv}^{2}=0$.
d) Show that the direction of curves bisecting the angle between the orthogonal parametric curves are
$\left(\pm \frac{1}{\sqrt{2}} \frac{1}{\sqrt{E}}, \pm \frac{1}{\sqrt{2}} \frac{1}{\sqrt{G}}\right)$

UNIT - II

2. a) If the arc length S is the parameter of the curve, then prove that the geodesic equations are
$\mathrm{V}=\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{v}^{\prime}}\right)-\frac{\partial \mathrm{T}}{\partial \mathrm{v}}=0$
b) Show that with S as parameter, the components of the geodesic curvature vector are given by
$\lambda=\frac{1}{\mathrm{H}^{2}} \frac{\mathrm{U}}{\mathrm{v}^{\prime}} \frac{\partial \mathrm{T}}{\partial \mathrm{V}^{\prime}}=-\frac{1}{\mathrm{H}^{2}} \frac{\mathrm{~V}}{\mathrm{u}^{\prime}} \frac{\partial \mathrm{T}}{\partial \mathrm{v}^{\prime}}$ and
$\mu=\frac{1}{\mathrm{H}^{2}} \frac{\mathrm{~V}}{\mathrm{u}^{\prime}} \frac{\partial \mathrm{T}}{\partial \mathrm{u}^{\prime}}=-\frac{1}{\mathrm{H}^{2}} \frac{\mathrm{U}}{\mathrm{v}^{\prime}} \frac{\partial \mathrm{T}}{\partial \mathrm{u}^{\prime}}$

OR

c) If U and V are the intrinsic quantities of a surface at a point (u, v) then prove that
i) $\quad \mathrm{K}_{\mathrm{g}}=\frac{1}{\mathrm{H}} \frac{\mathrm{V}(\mathrm{s})}{\mathrm{u}^{\prime}}$ and
ii) $\mathrm{K}_{\mathrm{g}}=-\frac{1}{\mathrm{H}} \frac{\mathrm{U}(\mathrm{s})}{\mathrm{v}^{\prime}}$
d) When a geodesic makes an angle θ with the curve $\mathrm{v}=$ constant of a geodesic coordinate system for which $\mathrm{ds}^{2}=\mathrm{du}^{2}+\mathrm{Gdv}^{2}$, then prove that $\frac{\mathrm{d} \theta}{\mathrm{ds}}+\frac{\partial}{\partial \mathrm{u}}(\sqrt{\mathrm{G}}) \mathrm{v}^{\prime}=0$

UNIT - III

3. a) Show that the anchor ring contains all three types of points namely elliptic, parabolic \& hyperbolic on the surface.
b) Show that the principal directions are given by

$$
(\mathrm{Em}-\mathrm{FL}) \ell^{2}+(\mathrm{EN}-\mathrm{GL}) \ell \mathrm{m}+(\mathrm{FN}-\mathrm{GM}) \mathrm{m}^{2}=0 .
$$

OR

c) If K is the normal curvature in a direction making an angle ψ with the principal direction $\mathrm{v}=$ constant then prove that
$\mathrm{K}=\mathrm{k}_{\mathrm{a}} \cos ^{2} \psi+\mathrm{k}_{\mathrm{b}} \sin ^{2} \psi$.
d) Prove that for a ruled surface
$R(u, v)=r(u)+v g(u)$, where $r=r(u)$ is
a point on the base curve and $g(u)$ is a unit vector along the generator, the Gaussian curvature

$$
\mathrm{K}=-\frac{[\dot{\mathrm{r}}, \mathrm{~g}, \dot{\mathrm{~g}}]^{2}}{\mathrm{H}^{4}}
$$

UNIT - IV

4. a) If $\mathrm{N}_{1}=\frac{\partial \mathrm{N}}{\partial \mathrm{u}}$ and $\mathrm{N}_{2}=\frac{\partial \mathrm{N}}{\partial \mathrm{v}}$ then prove that
i) $\quad \mathrm{N}_{1}=\frac{1}{\mathrm{H}^{2}}\left[(\mathrm{FM}-\mathrm{GL}) \mathrm{r}_{1}+(\mathrm{FL}-\mathrm{EM}) \mathrm{r}_{2}\right]$ and
ii) $\quad \mathrm{N}_{2}=\frac{1}{\mathrm{H}^{2}}\left[(\mathrm{FN}-\mathrm{GM}) \mathrm{r}_{1}+(\mathrm{FM}-\mathrm{EN}) \mathrm{r}_{2}\right]$
b) If the lines of curvature are parametric curves then obtain the Codazzi equations.
i) $L_{2}=\frac{1}{2} E_{2}\left(\frac{L}{E}+\frac{N}{G}\right) \&$
ii) $\quad \mathrm{N}_{1}=\frac{1}{2} \mathrm{G}_{1}\left(\frac{\mathrm{~L}}{\mathrm{E}}+\frac{\mathrm{N}}{\mathrm{G}}\right)$

OR

c) If $\mathrm{K}_{\mathrm{a}} \& \mathrm{~K}_{\mathrm{b}}$ are the principal curvatures, then prove that Codazzi equations are-
$\left(\mathrm{K}_{\mathrm{a}}\right)_{2}=\frac{1}{2} \frac{\mathrm{E}_{2}}{\mathrm{E}}\left(\mathrm{K}_{\mathrm{b}}-\mathrm{K}_{\mathrm{a}}\right)$ and
$\left(\mathrm{K}_{\mathrm{b}}\right)_{1}=\frac{1}{2} \frac{\mathrm{G}_{1}}{\mathrm{G}}\left(\mathrm{K}_{\mathrm{a}}-\mathrm{K}_{\mathrm{b}}\right)$
d) Prove that the parallel surfaces of a minimal surface are surfaces for which
$\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}=$ constant where $\mathrm{R}_{\mathrm{a}}=\frac{1}{\mathrm{~K}_{\mathrm{a}}} \& \mathrm{R}_{\mathrm{b}}=\frac{1}{\mathrm{~K}_{\mathrm{b}}}$.
5. a) Find E, F, G \& H for the paraboloid.
$\mathrm{x}=\mathrm{u}, \mathrm{y}=\mathrm{v}, \mathrm{z}=\mathrm{u}^{2}-\mathrm{v}^{2}$.
b) Find the Gaussian curvature at every point of a sphere of a radius a
c) Find L, M, N for the sphere
$r=(a \cos u \cos v, a \cos u \sin v, a \sin u)$ where u is the latitude $\& v$ is the longitude.
d) Show that only closed surface of constant positive curvature without singularities is a sphere.

