M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-II PSCMTH10: Core Elective Course : Differential Geometry

P. Pages : 3 GUG/W/22/13'				
Time : Th	hree Hours	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \star & 3 \\ \end{array} \\ \star & 3 \\ \end{array} \\ \star & 5 \\ \end{array} \\ \star & \end{array} \\ \begin{array}{c} \end{array} \\ \star \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	Max. Marks : 100	
Not	tes : 1. 2.	Solve all five questions. Each questions carry equal marks.		
		UNIT – I		
1. a)	Prove th i) If tai	hat ω is the angle between the parametric curves at the point of intersection, the $\omega = \frac{H}{F}$.	10 hen	
	ii) If o	ds represents the element of area PQRS on the surface then prove that ds =	- Hdudv	
b)	If (ℓ^1, \mathbf{n}) whose d	n^{1} are the direction coefficients of a line which makes an angle $\frac{\pi}{2}$ with the direction coefficients are (ℓ, m) then prove that-	ne line 10	
	$\ell^1 = -\frac{1}{1}$	$\frac{1}{H} \left(F\ell + Gm \right), \ m^1 = \frac{1}{H} \left(E\ell + Fm \right)$		
		OR		
c)	Show th Edu ² –	hat the curves bisecting the angle between the parametric curves are given $Gdv^2 = 0$.	by 10	
(b	Show th	not the direction of curves bisecting the angle between the orthogonal para	metric 10	

d) Show that the direction of curves bisecting the angle between the orthogonal parametric 10 curves are

$$\left(\pm\frac{1}{\sqrt{2}}\frac{1}{\sqrt{E}},\pm\frac{1}{\sqrt{2}}\frac{1}{\sqrt{G}}\right)$$

$\mathbf{UNIT}-\mathbf{II}$

2. a) If the arc length S is the parameter of the curve, then prove that the geodesic equations are 10 $U = \frac{d}{ds} \left(\frac{\partial T}{\partial u'} \right) - \frac{\partial T}{\partial u} = 0 \&$ $V = \frac{d}{ds} \left(\frac{\partial T}{\partial v'} \right) - \frac{\partial T}{\partial v} = 0$

b) Show that with S as parameter, the components of the geodesic curvature vector are given 10 by

$$\lambda = \frac{1}{H^2} \frac{U}{v'} \frac{\partial T}{\partial V'} = -\frac{1}{H^2} \frac{V}{u'} \frac{\partial T}{\partial v'} \text{ and}$$
$$\mu = \frac{1}{H^2} \frac{V}{u'} \frac{\partial T}{\partial u'} = -\frac{1}{H^2} \frac{U}{v'} \frac{\partial T}{\partial u'}$$

OR

c) If U and V are the intrinsic quantities of a surface at a point (u, v) then prove that

i)
$$K_g = \frac{1}{H} \frac{V(s)}{u'}$$
 and
ii) $K_g = -\frac{1}{H} \frac{U(s)}{v'}$

d) When a geodesic makes an angle θ with the curve v=constant of a geodesic coordinate 10 system for which $ds^2 = du^2 + Gdv^2$, then prove that $\frac{d\theta}{ds} + \frac{\partial}{\partial u} (\sqrt{G})v' = 0$

UNIT – III

- **3.** a) Show that the anchor ring contains all three types of points namely elliptic, parabolic & **10** hyperbolic on the surface.
 - b) Show that the principal directions are given by $(Em-FL)\ell^2 + (EN-GL)\ell m + (FN-GM)m^2 = 0.$

OR

- c) If K is the normal curvature in a direction making an angle ψ with the principal direction 10 v = constant then prove that $K = k_a \cos^2 \psi + k_b \sin^2 \psi$.
- d) Prove that for a ruled surface R(u, v) = r(u) + vg(u), where r = r(u) is a point on the base curve and g (u) is a unit vector along the generator, the Gaussian curvature

$$\mathbf{K} = -\frac{\left[\dot{\mathbf{r}}, \mathbf{g}, \dot{\mathbf{g}}\right]^2}{\mathbf{H}^4}$$

UNIT - IV

a) If
$$N_1 = \frac{\partial N}{\partial u}$$
 and $N_2 = \frac{\partial N}{\partial v}$ then prove that
i) $N_1 = \frac{1}{H^2} \left[(FM - GL)r_1 + (FL - EM)r_2 \right]$ and
ii) $N_2 = \frac{1}{H^2} \left[(FN - GM)r_1 + (FM - EN)r_2 \right]$

b) If the lines of curvature are parametric curves then obtain the Codazzi equations.

i)
$$L_2 = \frac{1}{2}E_2\left(\frac{L}{E} + \frac{N}{G}\right) \&$$
 ii) $N_1 = \frac{1}{2}G_1\left(\frac{L}{E} + \frac{N}{G}\right)$

OR

4.

10

10

10

10

10

c) If K_a & K_b are the principal curvatures, then prove that Codazzi equations are-(K_a)₂ = ¹/₂ ^{E₂}/_E (K_b - K_a) and (K_b)₁ = ¹/₂ ^{G₁}/_G (K_a - K_b)
d) Prove that the parallel surfaces of a minimal surface are surfaces for which

10

5

5

5

- d) Prove that the parallel surfaces of a minimal surface are surfaces for which $R_a + R_b = \text{constant}$ where $R_a = \frac{1}{K_a} \& R_b = \frac{1}{K_b}$.
- 5. a) Find E, F, G & H for the paraboloid. $x = u, y = v, z = u^2 - v^2$.
 - b) Find the Gaussian curvature at every point of a sphere of a radius a
 - c) Find L, M, N for the sphere $r = (a \cos u \cos v, a \cos u \sin v, a \sin u)$ where u is the latitude & v is the longitude.
 - d) Show that only closed surface of constant positive curvature without singularities is a **5** sphere.
