M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-II
 PSCMTH09 / MSCMTH09 : Classical Mechanics

P. Pages : 2

Time : Three Hours

GUG/W/22/13749

Notes: 1. All questions carry equal marks.
2. Solve all the five questions.

UNIT - I

1. a) State \& obtain the solution for Brachistochrone problem.
b) Obtain the equation of catenary by the minimum surface of revolution.

OR

c) Derive the Lagrange's equations from the Hamilton's principle.
d) Discuss the extension of Hamilton's principle to nonholonomic system.

UNIT - II
2. a) Show that the momentum conjugate to the time coordinate is the negative of the ordinary Hamiltonian.
b) Discuss the Routh's procedure \& show that this nonignorable coordinates obey the Lagrange equation
$\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{q}_{\mathrm{i}}}\right)-\frac{\partial \mathrm{R}}{\partial \mathrm{q}_{\mathrm{i}}}=0, i=1,2, \ldots \ldots, \mathrm{~s}$
With R as a Lagrangian.

OR

c) Derive Hamilton's equations from a variational principle.
d) Obtain the Hamilton's canonical equations.

UNIT - III

3. a) Show that symplectic condition holds for any infinitesimal transformations.
b) Obtain the equations of canonical transformations.

OR

c) Show that fundamental Poisson brackets are invariant under canonical transformation.
d) Obtain the equation
$p_{i} \dot{q}_{i}-H=P_{i} \dot{Q}_{i}-k+\frac{d f}{d t}$

UNIT - IV

4. a) Discuss the symmetric group of mechanical system.
b) Show that the constant of motion are generating functions of those infinitesimal transformation that leave the Hamiltonian invariant.

OR

c) Obtain the angular momentum Poisson bracket relations.
d) Show that the density of the system in the neighborhood of some given system in phase space remains constant in time i.e. $\frac{\mathrm{dD}}{\mathrm{dt}}=0$ or $\frac{\partial \mathrm{D}}{\partial \mathrm{t}}=-[\mathrm{D}, \mathrm{H}]$.
5. a) Show that the shortest distance between two points in a plane is a straight line.
b) Show that: $\frac{\mathrm{dH}}{\mathrm{dt}}=\frac{\partial \mathrm{H}}{\partial \mathrm{t}}=-\frac{\partial \mathrm{L}}{\partial \mathrm{t}}$.
c) State the example of canonical transformation which merely generates the identity transformation.
d) Obtain the relations:

$$
\dot{\mathrm{q}}_{\mathrm{i}}=\left[\mathrm{q}_{\mathrm{i}}, \mathrm{H}\right], \dot{\mathrm{p}}_{\mathrm{i}}=\left[\mathrm{p}_{\mathrm{i}}, \mathrm{H}\right] .
$$

