M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-II **PSCMTH08: : Advanced Topics in Topology**

P. P Tim	ages : e : Thr	2 ee Hours $\star 3 4 5 2 \star$	GUG/W/22/13748 Max. Marks : 100
	Note	 s: 1. Solve all five questions. 2. Each question carries equal marks. 	
		UNIT – I	
1.	a)	Prove that a topological space X is completely normal iff every subspace	of X is normal. 10
	b)	Prove that every separable metric space is second axiom.	10
		OR	
	c)	Prove that a normal space is completely regular iff it is regular.	10
	d)	Prove that every countably compact metric space is totally bounded.	10
		UNIT – II	
2.	a)	Prove that the projections $\Pi_x \& \Pi_y$ are continuous & open mappings be closed, and the product topology is the smallest topology for which the continuous.	at not necessarily 10 e projections are
	b)	Prove that $\prod_{\lambda} X_{\lambda}$ is connected iff each space X_{λ} is connected.	10
		OR	
	c)	Prove that XxY is dense-in-itself iff at least one of the spaces X & Y is de	ense-in-itself. 10
	d)	Prove that $\Pi_{\lambda} X_{\lambda}$ is Hausdorff iff each space X_{λ} is Hausdorff.	10
		UNIT – III	
3.	a)	Prove that a subset G of Y is open in the quotient topology relative to $f : x$ is an open subset of X.	\rightarrow y iff f ⁻¹ (G) 10
	b)	Prove that every paracompact regular space is normal.	10
		OR	
	c)	If X is locally connected, prove that Y is locally connected with the quotie	ent topology. 10
	d)	Prove that every second axiom T_3 -space is metrizable.	10

UNIT – IV

4.	a)	Prove that A topological space is Hausdorff iff limits of all nets in it are unique.	
	b)	Prove that A topological space is Hausdorff iff no filter can converge to more than one point in it.	
		OR	
	c)	Let A be a subset of a space X & let $x \in X$. Then prove that $x \in \overline{A}$ iff there exists a net in A which converges to x in X.	10
	d)	 For a topological space X, prove that the following statements are equivalent: i) X is compact ii) Every net in X has a cluster point in X iii) Every net in X has a convergent subnet in X 	10
5.	a)	Prove that every metric space is a Hausdorff space.	5
	b)	Define- i) Tichonov Topology ii) Projections	5
	c)	If f is a continuous, open mapping of the topological space X onto the topological space Y, then prove that the topology for Y must be the quotient topology.	5
	d)	Define- i) Directed Set ii) Filter	5
