M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-II **PSCMTH07: Lebesgue Measure Theory**

P. P Tim	Pages : 2 ne : Thr	2 ee Hours $\begin{array}{c} & & \\ & & \\ * & 3 & 4 & 5 & 1 & * \end{array}$	GUG/W/22/13 Max. Marks :	747 100
	Note	 s: 1. Solve all five questions. 2. All questions carry equal marks. 		
		UNIT – I		
1.	a)	If E_1 and E_2 are measurable. Then prove that $E_1 \bigcup E_2$ is also measurable		10
	b)	Prove that the outer measure of an interval is its length.		10
		OR		
	c)	Prove that : Every Borel set is measurable. In particular, each open set an is measurable.	d each closed set	10
	d)	Prove that if E is a measurable set of finite measure, and $\langle f_n \rangle$ a sequence functions defined on E. If f is a real valued function such that for each x if $f_n(x) \rightarrow f(x)$. Then given $\in > 0$ and $\delta > 0$, there is a measurable set A \subset and an integer N such that for all $x \notin A$ and all $n \ge N$, $ f_n(x) - f(x) < \in$	e of measurable n E, E With mA < δ	10
		UNIT – II		
2.	a)	State and prove the Bounded convergence theorem.		10
	b)	Prove that, If f and g are non-negative measurable functions, then. i) $\int_{E} cf = c \int_{E} f, c > 0$ ii) $\int_{E} f + g = \int_{E} f + \int_{E} g$ iii) If $f \le g$ a. e, then iv) $\int_{E} f \le \int_{E} g$		10
		OR		
	c)	Let f be a nonnegative function which is integrable over a set E. Then pro $\in > 0$ there is a $\delta > 0$ such that for every set A \subset E with mA < δ we have	by that given $e \int_{A} f < \epsilon$.	10
	d)	Show that if f is integrable over E, then so is $ f $ and $\left \int_{E} f \right \le \int_{E} f $		10

Does the integrability of |f| imply that of f.

UNIT – III

Prove that if f is integrable on [a, b], then the function F defined by 3. a)

 $F(x) = \int f(t) dt$

is a continuous function of bounded variation on [a, b].

b) Let E be a set of finite outer measure and I a collection of intervals that cover E in the 10 sense of Vitali.

Then prove that, given $\in > 0$, there is a finite disjoint collection $\left\{ I_1, I_2, ---I_N \right\}$ of

intervals in I such that $m * \left[E \sim \bigcup_{n=1}^{N} I_n \right] < \in$

- 10 c) Prove that: If f is integrable on [a, b] and $\int_{a}^{x} f(t) dt = 0$ for all $x \in [a, b]$, then f(t) = 0 a. e. in [a, b]
- Prove that a function F is an indefinite integral if and only if it is absolutely continuous. d) 10

UNIT – IV

10 4. a) State and prove Minkowski Inequality for L^p spaces with $1 \le P < \infty$.

b) Let a, b be nonnegative,
$$1 , $\frac{1}{p} + \frac{1}{q} = 1$.
Establish Young's inequality.$$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

OR

- c) Prove that the L^p spaces are complete.
- Let g be an integrable function on [0, 1] and suppose that there is a constant M such that d) 10 $\left|\int f_{g}\right| \leq M \left\|f\right\|_{p}$

For all bounded measurable functions f. Then prove that g is in L^q , and $\|g\|_q \le M$.

5. Prove that the set [0, 1] is not countable. a)

b) Show that if

$$f(x) = \begin{cases} 0 & x \text{ irrational} \\ 1 & x \text{ rational} \end{cases}$$
then

$$R \int_{-b}^{-b} f(x) dx = b - a \text{ and } R \int_{-a}^{b} f(x) dx = 0$$

- If f is of bounded variation on [a, b], then prove that c) $T_{a}^{b} = P_{a}^{b} + N_{a}^{b}$ and $f(b) - f(a) = P_{a}^{b} - N_{a}^{b}$
- d) Show that if $f \in L^p$, $g \in L^p$, then $f + g \in L^p$ even for 0 .*****

5

5

5

5

10

10