Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) If E_{1} and E_{2} are measurable. Then prove that $E_{1} \cup E_{2}$ is also measurable.
b) Prove that the outer measure of an interval is its length.

OR

c) Prove that : Every Borel set is measurable. In particular, each open set and each closed set is measurable.
d) Prove that if E is a measurable set of finite measure, and $\left\langle f_{n}\right\rangle$ a sequence of measurable functions defined on E. If f is a real valued function such that for each x in E, $\mathrm{f}_{\mathrm{n}}(\mathrm{x}) \rightarrow \mathrm{f}(\mathrm{x})$. Then given $\in>0$ and $\delta>0$, there is a measurable set $\mathrm{A} \subset \mathrm{E}$ with $\mathrm{mA}<\delta$ and an integer N such that for all $x \notin A$ and all $n \geq N$,
$\left|f_{n}(x)-f(x)\right|<\epsilon$

UNIT - II

2. a) State and prove the Bounded convergence theorem.
b) Prove that, If f and g are non-negative measurable functions, then.
i) $\quad \int_{\mathrm{E}} \mathrm{cf}=\mathrm{c} \int_{\mathrm{E}} \mathrm{f}, \mathrm{c}>0$
ii) $\quad \int_{\mathrm{E}} \mathrm{f}+\mathrm{g}=\int_{\mathrm{E}} \mathrm{f}+\int_{\mathrm{E}} \mathrm{g}$
iii) If $\mathrm{f} \leq \mathrm{ga}$. e, then
iv) $\int_{\mathrm{E}} \mathrm{f} \leq \int_{\mathrm{E}} \mathrm{g}$

OR

c) Let f be a nonnegative function which is integrable over a set E . Then prove that given $\in>0$ there is a $\delta>0$ such that for every set $\mathrm{A} \subset$ E with $\mathrm{mA}<\delta$ we have $\int_{\mathrm{A}} \mathrm{f}<\epsilon$.
d) Show that if f is integrable over E, then so is $|f|$ and
$\left|\int_{\mathrm{E}} \mathrm{f}\right| \leq \int_{\mathrm{E}}|\mathrm{f}|$
Does the integrability of $|f|$ imply that of f.

UNIT - III

3. a) Prove that if f is integrable on $[a, b]$, then the function F defined by
$F(x)=\int_{a}^{x} f(t) d t$
is a continuous function of bounded variation on $[a, b]$.
b) Let E be a set of finite outer measure and I a collection of intervals that cover E in the sense of Vitali.
Then prove that, given $\in>0$, there is a finite disjoint collection $\left\{\mathrm{I}_{1}, \mathrm{I}_{2},----\mathrm{I}_{\mathrm{N}}\right\}$ of intervals in I such that $m *\left[E \sim \bigcup_{n=1}^{N} I_{n}\right]<\epsilon$

OR

c) Prove that: If f is integrable on $[a, b]$ and $\int_{a}^{x} f(t) d t=0$ for all $x \in[a, b]$, then $f(t)=0$ a. e. in [a, b]
d) Prove that a function F is an indefinite integral if and only if it is absolutely continuous.

UNIT - IV

4. a) State and prove Minkowski Inequality for L^{p} spaces with $1 \leq \mathrm{P}<\infty$.
b) Let a, b be nonnegative, $1<\mathrm{p}<\infty, \frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=1$.

Establish Young's inequality.
$a b \leq \frac{\mathrm{a}^{\mathrm{p}}}{\mathrm{p}}+\frac{\mathrm{b}^{\mathrm{q}}}{\mathrm{q}}$

OR

c) Prove that the L^{p} spaces are complete.
d) Let g be an integrable function on [0,1] and suppose that there is a constant M such that
$\left|\int \mathrm{f}_{\mathrm{g}}\right| \leq \mathrm{M}\|\mathrm{f}\|_{\mathrm{p}}$
For all bounded measurable functions f. Then prove that g is in L^{q}, and $\|g\|_{q} \leq M$.
5. a) Prove that the set $[0,1]$ is not countable.
b) Show that if
$f(x)=\left\{\begin{array}{cc}0 & x \text { irrational } \\ 1 & x \text { rational }\end{array}\right.$
then
$R \int_{a}^{-b} f(x) d x=b-a$ and $R \int_{-a}^{b} f(x) d x=0$
c) If f is of bounded variation on [a, b], then prove that
$T_{a}^{b}=P_{a}^{b}+N_{a}^{b} \operatorname{andf}(b)-f(a)=P_{a}^{b}-N_{a}^{b}$
d) Show that if $f \in L^{p}, g \in L^{p}$, then $f+g \in L^{p}$ even for $0<p<1$.

