Max. Marks : 100

Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Prove that every Euclidean domain is a PID.
b) Prove that the product of two primitive polynomials is primitive.

OR

c) Prove that every PID is a UFD, but a UFD is not necessarily a PID.
d) If R is a UFD, then prove that the factorization of any element in R as a finite product of irreducible factors is unique to within order \& unit factors.

UNIT - II

2. a) Let $f(x) \in \mathbb{Z}[x]$ be primitive. Then prove that $f(x)$ is reducible over Q if \& only if $f(x)$ is reducible over \mathbb{Z}.
b) Let $\mathrm{F} \subseteq \mathrm{E} \subseteq \mathrm{K}$ be fields. If $[\mathrm{K}: \mathrm{E}]<\infty \operatorname{and}[\mathrm{E}: \mathrm{F}]<\infty$, then prove that
i) $[\mathrm{K}: \mathrm{F}]<\infty$
ii) $\quad[\mathrm{K}: \mathrm{F}]=[\mathrm{K}: \mathrm{E}] .[\mathrm{E}: \mathrm{F}]$

OR

c) Let $f(x)=a_{0}+a_{1} x+----+a_{n} x^{n} \in \mathbb{Z}[x], n \geq 1$. If there is a prime p such that $p^{2} \nsucc a_{0}, p\left|a_{0}, p\right| a_{1}----, p \mid a_{n-1}, p \nmid a_{n}$, then prove that $f(x)$ is irreducible over Q.
d) Let $\mathrm{p}(\mathrm{x})$ be an irreducible polynomial in $\mathrm{F}[\mathrm{x}]$. Then prove that there exists an extension E of F in which $p[x]$ has a root.

UNIT - III

3. a) Prove that the degree of the extension of the splitting field of $x^{3}-2 \in Q[x]$ is 6 .
b) Let E be a finite extension of a field F . The prove that the following are equivalent.
a) $E=F(\alpha)$ for some $\alpha \in E$.
b) There are only a finite number of intermediate fields between F \& E.

OR

c) Let p be prime. Then prove that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{p}}-1 \in \mathrm{Q}[\mathrm{x}]$ has splitting field $\mathrm{Q}(\alpha)$, where $\alpha \neq 1 \& \alpha^{\mathrm{p}}=1$. Also, prove that $[\mathrm{Q}(\alpha): \mathrm{Q}]=\mathrm{p}-1$
d) If E is a finite separable extension of a field F, then prove that E is a simple extension of F.

UNIT - IV

4. a) Prove that the Galois group of $x^{4}+1 \in Q[x]$ is the Klein four - group.
b) Prove that every polynomial $\mathrm{f}(\mathrm{x}) \in \sqsubset[\mathrm{x}]$ factors into linear factors in $\sqsubset[\mathrm{x}]$

OR

c) Let E be a finite separable extension of a field F . Then prove that the following are equivalent:
i) E is a normal extension of F
ii) F is the fixed field of $G(E / F)$.
iii) $[\mathrm{E}: \mathrm{F}]=|\mathrm{G}(\mathrm{E} / \mathrm{F})|$
d) Prove that the Galois group of $x^{4}-2 \in Q[x]$ is the octic group.
5. a) Define
i) Irreducible element
ii) Prime element.
b) Show that $x^{3}+3 x+2 \in \mathbb{Z} /(7)[x]$ is irreducible over the field $\mathbb{Z} /(7)$
c) Define
i) Splitting field
ii) Normal extension
d) Prove that the group $\mathrm{G}(\mathrm{Q}(\alpha) / \mathrm{Q})$, where $\alpha^{5}=1 \& \alpha \neq 1$, is isomorphic to the cyclic group of order 4.

