M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-II PSCMTH06 : Field Theory

	ages : ne : Th		W/22/13746 x. Marks : 100	
	Not	es : 1. Solve all five questions. 2. Each question carries equal marks.		
		UNIT – I		
1.	a)	Prove that every Euclidean domain is a PID.	10	
	b)	Prove that the product of two primitive polynomials is primitive.	10	
		OR		
	c)	Prove that every PID is a UFD, but a UFD is not necessarily a PID.	10	
	d)	If R is a UFD, then prove that the factorization of any element in R as a finite product of irreducible factors is unique to within order & unit factors.	10	
		UNIT – II		
2.	a)	Let $f(x) \in \mathbb{Z}[x]$ be primitive. Then prove that $f(x)$ is reducible over Q if & only if $f(x)$ is reducible over \mathbb{Z} .	10	
	b)	Let $F \subseteq E \subseteq K$ be fields. If $[K:E] < \infty$ and $[E:F] < \infty$, then prove that i) $[K:F] < \infty$	10	
		ii) $[K:F] = [K:E].[E:F]$		
		OR		
	c)	Let $f(x) = a_0 + a_1x + \dots + a_nx^n \in \mathbb{Z}[x], n \ge 1$. If there is a prime p such that	10	
		$p^2 \not\mid a_0, p \mid a_0, p \mid a_1 , p \mid a_{n-1}, p \not\mid a_n$, then prove that $f(x)$ is irreducible over Q.		
	d)	Let $p(x)$ be an irreducible polynomial in $F[x]$. Then prove that there exists an extension	10	
		E of F in which $p[x]$ has a root.		
		UNIT – III		
3.	a)	Prove that the degree of the extension of the splitting field of $x^3 - 2 \in Q[x]$ is 6.	10	
	b)	Let E be a finite extension of a field F. The prove that the following are equivalent. a) $E = F(\alpha)$ for some $\alpha \in E$.	10	
		b) There are only a finite number of intermediate fields between F & E.		
		OR		

c)	Let p be prime. Then prove that $f(x) = x^p - 1 \in Q[x]$ has splitting field $Q(\alpha)$, where	10			
1.	$\alpha \neq 1 \& \alpha^p = 1$. Also, prove that $[Q(\alpha):Q] = p-1$	10			
d)	If E is a finite separable extension of a field F, then prove that E is a simple extension of F.	10			
$\mathbf{UNIT} - \mathbf{IV}$					
a)	Prove that the Galois group of $x^4 + 1 \in Q[x]$ is the Klein four – group.	10			
b)	Prove that every polynomial $f(x) \in \mathbb{C}[x]$ factors into linear factors in $\mathbb{C}[x]$	10			
	OR				
c)	Let E be a finite separable extension of a field F. Then prove that the following are equivalent:	10			
	i) E is a normal extension of F				
	iii) $[E:F] = G(E/F) $				
d)	Prove that the Galois group of $x^4 - 2 \in Q[x]$ is the octic group.	10			
		_			
a)		5			
	ii) Prime element.				
b)	(1, 1, 2, 3, 2, 3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	5			
C)		5			
	ii) Normal extension				
	d) a) b)	 Let p be pline. First prove that f(x) = x = f∈Q[x] has splitting field Q(u), where a ≠ 1 & a^p = 1 . Also, prove that [Q(u): Q] = p -1 d) If E is a finite separable extension of a field F, then prove that E is a simple extension of F. UNIT - IV a) Prove that the Galois group of x⁴ +1 ∈ Q[x] is the Klein four - group. b) Prove that every polynomial f(x) ∈⊂ [x] factors into linear factors in ⊂ [x] OR c) Let E be a finite separable extension of a field F. Then prove that the following are equivalent: i) E is a normal extension of F ii) F is the fixed field of G(E/F). iii) [E:F]= G(E/F) d) Prove that the Galois group of x⁴ - 2 ∈ Q[x] is the octic group. a) Define i) Irreducible element ii) Prime element. b) Show that x³ + 3x + 2 ∈ Z/(7)[x] is irreducible over the field Z/(7) c) Define i) Splitting field 			

d) Prove that the group $G(Q(\alpha)/Q)$, where $\alpha^5 = 1 \& \alpha \neq 1$, is isomorphic to the cyclic group of order 4.

5