M.Sc.(Mathematics) (New CBCS Pattern) Semester - I **PSCMTH05(D)** - Optional Paper : Number Theory

P. Pages : 2 Time : Three Hours		2 ree Hours	$\begin{array}{c} & & & & \\ & & & \\ * & 2 & 4 & 8 & 0 & * \end{array} \qquad \qquad$		/ 23/13744 Marks : 100	
	Notes : 1. 2.		Solve all five questions. Each question carries equal marks.		-	
			UNIT - I			
1.	a)	Prove th i) ax ii) If a	at $\equiv ay \pmod{m} \text{ iff } x \equiv y \left(\mod \frac{m}{(a,m)} \right)$ $ax \equiv ay \pmod{m} \& (a,m) = 1 \text{ then } x \equiv y \pmod{m}$	1	.0	
	b)	Let (a,n prove tha	n) = 1, Let $r_1, r_2,, r_n$ be a complete, or a reduced, residue system r at ar_1, ar_2ar_n is a complete, or a reduced residue system, respecti	nodulo m. Then 1 vely, modulo m.	.0	
			OR			
	c)	If (a,m)	=1 then prove that $a^{\oint(m)} \equiv 1 \pmod{m}$	1	.0	
	d)	Exhibit a	a reduced residue system modulo 7, composed entirely of powers of	of 3. 1	0	
			UNIT - II			
2.	a)	State &]	prove Hensel's Lemma.	1	0	
	b)	Solve x ²	$^{2} + x + 47 \equiv 0 \pmod{7^{3}}$	1	.0	

OR

- 10 c) Prove that the congruence $f(x) \equiv 0 \pmod{p}$ of degree n has at most n solutions.
- If p is a prime & (a, p) = 1. Then prove that the congruence $x^4 \equiv a \pmod{p}$ has (n, p-1) 10 d) solutions or no solutions according as $a^{(p-1)}/(n, p-1) \equiv 1 \pmod{p}$ or not.

UNIT - III

3. a) Let p denote an odd prime & a an integer relatively prime to p then prove that. 10 i) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$ ii) $a \equiv b \pmod{p} \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$ iii) $\left(\frac{a^2}{p}\right) = 1; \left(\frac{a^2b}{p}\right) = \left(\frac{b}{p}\right); \left(\frac{1}{p}\right) = 1 \text{ if } (a,p) = 1$ GUG/S/23/13744 P.T.O

10 b) Let p be a prime integer. Let (a, p) = 1 & (b, p) = 1. If $x^2 \equiv a \pmod{p} \& x^2 \equiv b \pmod{p}$ are not solvable. Then prove that $x^2 \equiv ab \pmod{p}$ is solvable.

OR

State & prove the Gaussian Reciprocity law. c)

d) Evaluate
$$\left(\frac{-42}{61}\right)$$
. 10

UNIT - IV

- For each positive integer n, prove that 4. a) $d(n) = \prod_{P^{\alpha}|ln} (\alpha + 1)$
 - let f(n) be a multiplicative function & let $F(n) = \sum_{d/n} f(d)$ then prove that F(n) is 10 b) multiplicative.

OR

- c) Find all solutions in positive integers. 5x + 3y = 52
- Show that the positive primitive solutions of $x^2 + y^2 = z^2$ with y even are d) $x = r^2 - s^2$, y = 2rs, $z = r^2 + s^2$, where r & s are arbitrary integers of opposite parity with r > s > 0 and (r, s) = 1.

5. a) If
$$a \equiv b \pmod{m}$$
 & $c \equiv d \pmod{m}$ then prove that $ac \equiv bd \pmod{m}$.

- Find the solution of $x^2 + x + 7 \equiv 0 \pmod{27}$. b)
- 5 c) If a has order h(mod m), b has order k(mod m) & if (h,k)=1 then prove that ab has order hk (mod m).

d) For every positive integer n, prove that
$$\sigma(n) = \prod_{p^{\alpha} \mid ln} \left(\frac{p^{\alpha+1}-1}{p-1} \right).$$
 5

10

10

10

10

5