M.Sc.(Mathematics) (New CBCS Pattern) Semester - I
 PSCMTH05(D) - Optional Paper : Number Theory

P. Pages : 2
$||||||||||||||||||||||||||||||||\mid$
GUG/S/23/13744
Time : Three Hours

Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Prove that
i) $\quad a x \equiv a y(\bmod m)$ iff $x \equiv y\left(\bmod \frac{m}{(a, m)}\right)$
ii) If $\mathrm{ax} \equiv \mathrm{ay}(\operatorname{modm}) \&(\mathrm{a}, \mathrm{m})=1$ then $\mathrm{x} \equiv \mathrm{y}(\bmod m)$
b) Let $(a, m)=1$, Let $r_{1}, r_{2}, \ldots, r_{n}$ be a complete, or a reduced, residue system modulo m. Then prove that $a r_{1}, \mathrm{ar}_{2} \ldots \mathrm{ar}_{\mathrm{n}}$ is a complete, or a reduced residue system, respectively, modulo m .

OR

c) If $(\mathrm{a}, \mathrm{m})=1$ then prove that $\mathrm{a}^{\oint(\mathrm{m})} \equiv 1(\bmod \mathrm{~m})$
d) Exhibit a reduced residue system modulo 7, composed entirely of powers of 3.

UNIT - II

2. a) State \& prove Hensel's Lemma.
b) Solve $x^{2}+x+47 \equiv 0\left(\bmod 7^{3}\right)$

OR

c) Prove that the congruence $f(x) \equiv 0(\bmod p)$ of degree n has at most n solutions.
d) If p is a prime $\&(a, p)=1$. Then prove that the congruence $x^{4} \equiv a(\bmod p)$ has $(n, p-1)$ solutions or no solutions according as $\mathrm{a}^{(\mathrm{p}-1)} /(\mathrm{n}, \mathrm{p}-1) \equiv 1(\bmod \mathrm{p})$ or not.

UNIT - III

3. a) Let p denote an odd prime \& a an integer relatively prime to p then prove that.
i) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
ii) $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{p}) \Rightarrow\left(\frac{\mathrm{a}}{\mathrm{p}}\right)=\left(\frac{\mathrm{b}}{\mathrm{p}}\right)$
iii) $\left(\frac{\mathrm{a}^{2}}{\mathrm{p}}\right)=1 ;\left(\frac{\mathrm{a}^{2} \mathrm{~b}}{\mathrm{p}}\right)=\left(\frac{\mathrm{b}}{\mathrm{p}}\right) ;\left(\frac{1}{\mathrm{p}}\right)=1$ if $(\mathrm{a}, \mathrm{p})=1$
b) Let p be a prime integer. Let $(a, p)=1 \&(b, p)=1$. If $x^{2} \equiv a(\bmod p) \& x^{2} \equiv b(\bmod p)$ are not solvable. Then prove that $x^{2} \equiv a b(\bmod p)$ is solvable.

OR

c) State \& prove the Gaussian Reciprocity law.
d) Evaluate $\left(\frac{-42}{61}\right)$.

UNIT - IV

4. a) For each positive integer n, prove that

$$
\mathrm{d}(\mathrm{n})=\prod_{\mathrm{P}^{\alpha} \mid \ln }(\alpha+1)
$$

b) let $f(n)$ be a multiplicative function \& let $F(n)=\sum_{d / n} f(d)$ then prove that $F(n)$ is multiplicative.

OR

c) Find all solutions in positive integers.
$5 x+3 y=52$
d) Show that the positive primitive solutions of $x^{2}+y^{2}=z^{2}$ with y even are
$x=r^{2}-s^{2}, y=2 r s, z=r^{2}+s^{2}$, where $r \& s$ are arbitrary integers of opposite parity with $r>s>0$ and $(r, s)=1$.
5. a) If $\mathrm{a} \equiv \mathrm{b}(\bmod m) \& \mathrm{c} \equiv \mathrm{d}(\bmod m)$ then prove that $\mathrm{ac} \equiv \mathrm{bd}(\bmod m)$.
b) Find the solution of $x^{2}+x+7 \equiv 0(\bmod 27)$.
c) If a has order $h(\bmod m), b$ has order $k(\bmod m) \&$ if $(h, k)=1$ then prove that ab has order $\mathrm{hk}(\bmod \mathrm{m})$.
d) For every positive integer n, prove that $\sigma(n)=\prod_{P^{\alpha} \mid \ln }\left(\frac{p^{\alpha+1}-1}{p-1}\right)$.

