Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Consider the equation
$y^{\prime}+a y=b(x)$,
where a is a constant, and b is a continuous function on an interval. If x_{0} is a point in I and C is any constant, then prove that the function ϕ defined by

$$
\phi(\mathrm{x})=\mathrm{e}^{-\mathrm{ax}} \int_{\mathrm{x}_{0}}^{\mathrm{x}} \mathrm{e}^{\mathrm{at}} \mathrm{~b}(\mathrm{t}) \mathrm{dt}+\mathrm{ce}^{-\mathrm{ax}}
$$

is a solution of this equation. Also, show that every solution has this form.
b) Consider the equation $y^{\prime \prime}+y^{\prime}-6 y=0$. Compute the solution ϕ satisfying $\phi(0)=1, \phi^{\prime}(0)=0$.

OR

c) Prove that if ϕ is any solution of
$L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0$
on an interval I containing a point x_{0}, then for all x in I
$\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{-\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|} \leq\|\phi(\mathrm{x})\| \leq\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|}$
where
$\|\phi(\mathrm{x})\|=\left[|\phi(\mathrm{x})|^{2}+\left|\phi^{\prime}(\mathrm{x})\right|^{2}\right]^{1 / 2}, \mathrm{k}=1+\left|\mathrm{a}_{1}\right|+\left|\mathrm{a}_{2}\right|$.
d) Compute the solution ϕ of the equation
$y^{(4)}+16 y=0$
which satisfies
$\phi(0)=1, \phi^{\prime}(0)=0, \phi^{\prime \prime}(0)=0, \phi^{\prime \prime \prime}(0)=0$.
UNIT - II
2. a) Let x_{0} be in I, and let $\alpha_{1}, \ldots \ldots, \alpha_{n}$ be any n constants. Then prove that there is atmost one solution ϕ of
$L(y)=y^{(n)}+a_{1}(x) y^{(n-1)}+\ldots . .+a_{n}(x) y=0$ on I satisfying
$\phi\left(\mathrm{x}_{0}\right)=\alpha_{1}, \phi^{\prime}\left(\mathrm{x}_{0}\right)=\alpha_{2}, \ldots \ldots, \phi^{(\mathrm{n}-1)}\left(\mathrm{x}_{0}\right)=\alpha_{\mathrm{n}}$
b) Consider the equation
$L(y)=y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0$
where $\mathrm{a}_{1}, \mathrm{a}_{2}$ are continuous on some interval I. Let ϕ_{1}, ϕ_{2} and ψ_{1}, ψ_{2} be two bases for the solutions of $L(y)=0$. Show that there is a non-zero constant k such that $\mathrm{W}\left(\psi_{1}, \psi_{2}\right)(\mathrm{x})=\mathrm{k} \mathrm{W}\left(\phi_{1}, \phi_{2}\right)(\mathrm{x})$.

OR

c) Find all solutions of the equation
$y^{\prime \prime}-\frac{2}{x^{2}} y=x,(0<x<\infty)$
d) Consider the second order Euler equation
$x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0$ (a, b constants), and the polynomial q given by $\mathrm{q}(\mathrm{r})=\mathrm{r}(\mathrm{r}-1)+\mathrm{ar}+\mathrm{b}$
Prove that a basis for the solutions of the Euler equation on any interval not containing $\mathrm{x}=0$ is given by
$\phi_{1}(x)=|x|^{r}, \phi_{2}(x)=|x|^{r_{2}}$,
in case r_{1}, r_{2} are distinct roots of q, and by $\phi_{1}(x)=|x|^{r}, \phi_{2}(x)=|x|^{r_{1}} \log |x|$,
if r_{1} is a root of q of multiplicity two.

UNIT - III

3. a) Let g , h be continuous real-valued functions for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}, \mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$ respectively, and consider the equation
$h(y) y^{\prime}=g(x)$.
If G, H are any functions such that $\mathrm{G}^{\prime}=\mathrm{g}, \mathrm{H}^{\prime}=\mathrm{h}$, and C is any constant such that the relation
$H(y)=G(x)+C$
defines a real-valued differentiable function ϕ for x in some interval I contained in $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$, then prove that ϕ will be a solution of
$h(y) y^{\prime}=g(x)$
on I. Conversely, prove that if ϕ is a solution of
$h(y) y^{\prime}=g(x)$
on I, it satisfies the relation
$\mathrm{H}(\mathrm{y})=\mathrm{G}(\mathrm{x})+\mathrm{C}$
on I, for some constant C.
b) Let M, N be two real-valued functions which have continuous first partial derivatives on some rectangle
$R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b$
then prove that the equation
$\mathrm{M}(\mathrm{x}, \mathrm{y})+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{y}^{\prime}=0$
is exact in R if , and only if,
$\frac{\partial \mathrm{M}}{\partial \mathrm{y}}=\frac{\partial \mathrm{N}}{\partial \mathrm{x}}$
in R.

OR

c) Prove that if S is either a rectangle
$\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b,(a, b>0)$, or a strip
$\left|x-x_{0}\right| \leq a,|y|<\infty(a>0)$,
and that f is a real-valued function defined on S such that $\frac{\partial \mathrm{f}}{\partial \mathrm{y}}$ exists, is continuous on S , and
$\left|\frac{\partial f}{\partial y}(\mathrm{x}, \mathrm{y})\right| \leq \mathrm{k},((\mathrm{x}, \mathrm{y})$ in S$)$, for some $\mathrm{k}>0$. Then f satisfies a Lipschitz condition on S with Lipschitz constant K.
d) Let f be a real valued continuous function on the strip
$\mathrm{S}:\left|\mathrm{x}-\mathrm{x}_{0}\right| \leq \mathrm{a},|\mathrm{y}|<\infty,(\mathrm{a}>0)$, and suppose that f satisfies on S a Lipschitz condition with constant $\mathrm{k}>0$. Then prove that the successive approximations $\left\{\phi_{\mathrm{k}}\right\}$ for the problem $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$,
exist on the entire interval $\left|x-x_{0}\right| \leq a$, and converge there to a solution of the given initial value problem.

UNIT - IV

4. a) Find the solution ϕ of
$y^{\prime \prime}=1+\left(y^{\prime}\right)^{2}$
which satisfies $\phi(0)=0, \phi^{\prime}(0)=0$.
b) Suppose f is a vector-valued function defined for (x, y) on a set S of the form
$\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b,(a, b>0)$, or of the form
$\left|x-x_{0}\right| \leq a,|y|<\infty,(a>0)$
If $\frac{\partial f}{\partial y_{k}}(k=1, \ldots ., n)$ exists, is continuous on S, and there is a constant $k>0$ such that $\left|\frac{\partial \mathrm{f}}{\partial \mathrm{y}_{\mathrm{k}}}(\mathrm{x}, \mathrm{y})\right| \leq \mathrm{k}, \quad(\mathrm{k}=1, \ldots ., \mathrm{n})$,
for all (x, y) in S , then prove that f satisfies a Lipschitz condition on S with Lipschitz constant K.

OR

c) Show that Euclidean length satisfies the same rules as the magnitude, namely:
i) $\|y\| \geq 0$ and $\|y\|=0$ if and only if $y=0$,
ii) $\quad\|\mathrm{cy}\|=|\mathrm{C}| \cdot\|\mathrm{y}\|$, for any complex number c ,
iii) $\|y+z\| \leq\|y\|+\|z\|$
d) Compute the first four successive approximations $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ for the problem
$y_{1}^{1}=y_{2}$,
$y_{2}^{1}=-y_{1}$
$y(0)=(0,1)$
Show that $\phi_{\mathrm{k}}(\mathrm{x}) \rightarrow \phi(\mathrm{x})=(\sin \mathrm{x}, \cos \mathrm{x})$.
5. a) Find all solutions of the following equation
$y^{\prime}-2 y=1$
b) One solution of
$x^{2} y^{\prime \prime}-7 x y^{\prime}+15 y=0$
for $\mathrm{x}>0$ is $\phi_{1}(\mathrm{x})=\mathrm{x}^{3}$. Find it's second independent solution.
c) Find all real-valued solution ϕ of
$y^{\prime}=x^{2} y$
d) Solve the equation
$\mathrm{y}^{\prime \prime}+\mathrm{y}^{\prime}=1$.

