M.Sc.-I (Mathematics) (New CBCS Pattern) Semester - I

PSCMTH05(B) - Ordinary Differential Equations
P. Pages : 4

Time : Three Hours

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let a_{1}, a_{2} be constants, and consider the equation

$$
\mathrm{L}(\mathrm{y})=\mathrm{y}^{\prime \prime}+\mathrm{a}_{1} \mathrm{y}^{\prime}+\mathrm{a}_{2} \mathrm{y}=0
$$

If r_{1}, r_{2} are distinct roots of the characteristic polynomial P, where

$$
\mathrm{p}(\mathrm{r})=\mathrm{r}^{2}+\mathrm{a}_{1} \mathrm{r}+\mathrm{a}_{2}
$$

Then show that the functions ϕ_{1}, ϕ_{2} defined by

$$
\phi_{1}(x)=e^{r_{1} x}, \phi_{2}(x)=e^{r_{2} x}
$$

are solutions of $L(y)=0$. Also show that if r_{1} is a repeated root of p, then the functions ϕ_{1}, ϕ_{2} defined by

$$
\phi_{1}(x)=e^{r_{1} x}, \phi_{2}(x)=x^{e^{r_{1}} x}
$$

are solutions of $L(y)=0$
b) Consider the equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0
$$

where a_{1}, a_{2} are real constant such that $4 a_{2}-a_{1}^{2}>0$. Let $\alpha+i \beta, \alpha-i \beta$ (α, β real) be the roots of the characteristic polynomial.
i) Show that ϕ_{1}, ϕ_{2} defined by

$$
\phi_{1}(x)=\mathrm{e}^{\alpha \mathrm{x}} \cos \beta \mathrm{x}, \phi_{2}(\mathrm{x})=\mathrm{e}^{\alpha \mathrm{x}} \sin \beta \mathrm{x}
$$

are solutions of the equation
ii) Compute $\mathrm{w}\left(\phi_{1}, \phi_{2}\right)$ and show that ϕ_{1}, ϕ_{2} are linearly independent on any interval I.

OR

c) Let $r_{i}, \ldots \ldots ., r_{s}$ be the distinct roots of the characteristic polynomial p, and suppose r_{i} has multiplicity $\mathrm{m}_{\mathrm{i}}\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\ldots \ldots+\mathrm{m}_{\mathrm{s}}=\mathrm{n}\right)$. The n functions.

$$
\begin{aligned}
& e^{r_{1} \mathrm{x}}, x^{\mathrm{r}_{1} \mathrm{x}}, \ldots \ldots . . . x^{\mathrm{m}_{1}-1} \mathrm{e}^{\mathrm{r}_{1} \mathrm{x}} ; \\
& e^{r_{2}}, x^{r_{2}}, \ldots \ldots . ., x^{m_{2}-1} e^{r_{2} x} ; \\
& \text {----------------------------------- } \\
& e^{r_{S} x}, x e^{r_{S} x}, \ldots, x^{m_{s}-1} e^{r_{s} x}
\end{aligned}
$$

are solutions of $L(y)=0$. Prove that the n solutions of $L(y)=0$ are linearly independent on any interval I.
d) Using the annihilator method find a particular solution of the equation $y^{\prime \prime}+4 y=\cos x$.
2. a) Let x_{0} be in I, and let $\alpha_{1}, \ldots, \alpha_{n}$ be any n constants. Prove that there is almost one solution ϕ of $\mathrm{L}(\mathrm{y})=0$ on I satisfying

$$
\phi\left(\mathrm{x}_{0}\right)=\alpha_{1}, \phi^{1}\left(\mathrm{x}_{0}\right)=\alpha_{2}, \ldots \ldots ., \phi^{(\mathrm{n}-1)}\left(\mathrm{x}_{0}\right)=\alpha_{\mathrm{n}}
$$

b) Find two linearly independent solutions of the equation

$$
(3 x-1)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y=0
$$

For $\quad \mathrm{x}>\frac{1}{3}$

OR

c) Let b be continuous on an interval I, and let $\phi_{1}, \ldots \ldots . ., \phi_{\mathrm{n}}$ be a basis for the solutions of $\mathrm{L}(\mathrm{y})=0$ on I. Prove that every solution ψ of $\mathrm{L}(\mathrm{y})=\mathrm{b}(\mathrm{x})$ can be written as

$$
\psi=\psi_{\mathrm{p}}+\mathrm{C}_{1} \phi_{1}+\ldots \ldots . .+\mathrm{C}_{\mathrm{n}} \phi_{\mathrm{n}}
$$

where ψ_{p} is a particular solution of $L(y)=b(x)$ and $C_{1}, \ldots \ldots ., C_{n}$ are constants. Also, show that every such ψ is a solution of $\mathrm{L}(\mathrm{y})=\mathrm{b}(\mathrm{x})$, where the particular solution ψ_{p} is given by

$$
\psi_{\mathrm{p}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \phi_{\mathrm{k}}(\mathrm{x}) \int_{\mathrm{x}_{0}}^{\mathrm{x}} \frac{\mathrm{w}_{\mathrm{k}}(\mathrm{t}) \mathrm{b}(\mathrm{t})}{\mathrm{w}\left(\phi_{1}, \ldots ., \phi_{\mathrm{n}}\right)(\mathrm{t})} \mathrm{dt}
$$

d) Find all solution of the equation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 \text { for } x>0
$$

UNIT - III

3. a) Suppose the equation $\mathrm{M}(\mathrm{x}, \mathrm{y})+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{y}^{\prime}=0$ is exact in a rectangle R , and F is a real valued function such that $\frac{\partial F}{\partial x}=M, \frac{\partial F}{\partial y}=N$ in R. Prove that every differentiable function ϕ defined implicitly by a relation $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{C},(\mathrm{C}=$ constant $)$, is a solution of the equation $M(x, y)+N(x, y) y^{\prime}=0$, and every solution of this equation whose graph lies in R arises this way.
b) i) Find the solution of $y^{\prime}=2 y^{1 / 2}$ passing through the point $\left(x_{0}, y_{0}\right)$ where $y_{0}>0$.
ii) Find all solutions of this equation passing through ($\mathrm{x}_{0}, 0$).

OR

c) Suppose S is either a rectangle

$$
\left.\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b,(a, b)>0\right)
$$

or a strip

$$
\left|x-x_{0}\right| \leq a,|y|<\infty,(a>0),
$$

and that f is a real - valued function defined on S such that $\partial \mathrm{f} / \partial \mathrm{y}$ exists, is continuous on S, and $\left|\frac{\partial f}{\partial y}(x, y)\right| \leq k$, ((x,y) in s), for some $k>0$. Then prove that f satisfies a Lipschitz condition on S with Lipschitz constant k .
d) Consider the problem

$$
y^{\prime}=y+\lambda x^{2} \sin y, y(0)=1,
$$

where λ is some real parameter, $|\lambda| \leq 1$.
i) Show that the solution ψ of this problem exists for $|\mathrm{x}| \leq 1$
ii) Prove that
$\left|\psi(\mathrm{x})-\mathrm{e}^{\mathrm{x}}\right| \leq|\lambda|\left(\mathrm{e}^{\mathrm{x} \mid}-1\right)$
For $|\mathrm{x}| \leq 1$.

UNIT - IV

4. a) Solve the equation $y^{\prime \prime}=f\left(y, y^{\prime}\right)$, where f is a function independent of x.
b) For any two vectors $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots, \mathrm{y}_{\mathrm{n}}\right)$ and $\mathrm{z}=\left(\mathrm{z}_{1}, \ldots \ldots, \mathrm{z}_{\mathrm{n}}\right)$ in C_{n} define the inner product $\mathrm{y}-\mathrm{z}$ to be the number given by

$$
\mathrm{y} \cdot \mathrm{z}=\mathrm{y}_{1} \overline{\mathrm{z}}+\ldots \ldots+\mathrm{y}_{\mathrm{n}} \overline{\mathrm{z}}_{\mathrm{n}}
$$

i) Show that $z \cdot y=(\overline{y \cdot z})$
ii) Show that $\left(y_{1}+y_{2}\right) \cdot z=\left(y_{1} \cdot z\right)+\left(y_{2} \cdot z\right)$
iii) Show that if C is a complex number

$$
(\mathrm{cy}) \cdot \mathrm{z}=\mathrm{c}(\mathrm{y} \cdot \mathrm{z})=\mathrm{y} \cdot(\overline{\mathrm{c}} \cdot \mathrm{z})
$$

iv) Show that $\|y\|^{2}=y \cdot y$

OR

c) Consider the system

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{1}+x y_{3}, \\
& y_{2}^{\prime}=y_{2}+x^{3} y_{3}, \\
& y_{3}^{\prime}=2 x y_{1}-y_{2}+e^{x} y_{3}
\end{aligned}
$$

Show that every initial value problem for this system has a unique solution which exists for all real x.
d) Let $a_{1}, \ldots . ., a_{n} b$ be continuous complex - valued functions on an interval I containing a point x_{0}. If $\alpha_{1}, \ldots . ., \alpha_{\mathrm{n}}$ are any n constants, then prove that there exists one and only one solution ϕ of the equation

$$
y^{(n)}+a_{1}(x) y^{(n-1)}+\ldots . .+a_{n}(x) y=b(x)
$$

On I satisfying $\phi\left(\mathrm{x}_{0}\right)=\alpha_{1}, \phi^{\prime}\left(\mathrm{x}_{0}\right)=\alpha_{2}, \ldots \ldots . ., \phi^{(\mathrm{n}-1)}\left(\mathrm{x}_{0}\right)=\alpha_{\mathrm{n}}$
5. a) Find all solutions of the equation

$$
y^{\prime}-2 y=1
$$

b) Define:
i) Homogenous linear differential equation of order n.
ii) Non-homogeneous linear differential equation of order n.
c) Find all real - valued solutions of the equation $y^{\prime}=x^{2} y$
d) Solve the equation $y^{\prime \prime}+y^{\prime}=1$.

