Elective Course Code : PSCMTH05(A) - Numerical Analysis Paper-V

P. Pages : 2

GUG/S/23/13741
Time : Three Hours
Notes: 1. Solve all five questions.
2. Each questions carries equal marks.

UNIT - I

1. a) Assume $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are continuous for all x in some neighbourhood of α, and
assume $f(\alpha)=0, f^{\prime}(\alpha) \neq 0$ then prove that if x_{0} is chosen sufficiently close to α the iterates $x_{n}, n \geq 0$ of $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$, will converge to α.
b) Discuss the secant method and prove convergence of x_{n} to α under suitable condition.

OR

c) Consider Newton's method for finding the positive square root of $\mathrm{a}>0$. Derive the following result, assuming $\mathrm{x}_{0}>0, \mathrm{x}_{0} \neq \sqrt{\mathrm{a}}$.
i) $\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}+\mathrm{a} / \mathrm{x}_{\mathrm{n}}\right)$
ii) $\quad \mathrm{x}_{\mathrm{n}+1}^{2}-\mathrm{a}=\left[\frac{\mathrm{x}_{\mathrm{n}}{ }^{2}-\mathrm{a}}{2 \mathrm{x}_{\mathrm{n}}}\right]^{2}, \mathrm{n} \geq 0$
iii) The iterates $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ are strictly decreasing sequence for $\mathrm{n} \geq 1$.
iv) $e_{n+1}=-e_{n}^{2} / 2 x_{n}$ with $e_{n}=\sqrt{a}-x_{n}$.
d) Apply Newton's method to the following function.
$f(x)=\left\{\begin{aligned} \sqrt{x}, & x \geq 0 \\ -\sqrt{-x}, & x \leq 0\end{aligned}\right.$
with root $\alpha=0$, what is the behaviour of the iterates? Do they converage and if so, at what rate?

UNIT - II

2. a) Show that for any two functions f and g and for any two constants α and β.
$\Delta^{\mathrm{r}}(\alpha \mathrm{f}(\mathrm{x})+\beta \mathrm{g}(\mathrm{x}))=\alpha \Delta^{\mathrm{r}} \mathrm{f}(\mathrm{x})+\beta \Delta^{\mathrm{r}} \mathrm{g}(\mathrm{x}), \mathrm{r} \geq 0$
b) Find the Hermite interpolating polynomial for which
$p(a)=f(b), p^{\prime}(a)=f^{\prime}(a)$
$p(b)=f(b), p^{\prime}(b)=f^{\prime}(b)$

OR

c) Let $\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}$ be distinct real numbers and let $\mathrm{f}(\mathrm{x})$ be n times continuously differentiable
$\mathrm{f}\left[\mathrm{x}_{0}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}\right]=\iint \ldots \ldots \int_{\mathrm{T}_{\mathrm{n}}} \mathrm{f}^{(\mathrm{n})}\left(\mathrm{t}_{0} \mathrm{x}_{0}+\ldots .+\mathrm{t}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right) \mathrm{dt}_{1} \ldots \ldots . \mathrm{dt}_{\mathrm{n}}$
$\mathrm{T}_{\mathrm{n}}=\left\{\left(\mathrm{t}_{1}, \ldots \ldots ., \mathrm{t}_{\mathrm{n}}\right) / \mathrm{t}_{1} \geq 0, \ldots \ldots . . \mathrm{t}_{\mathrm{n}} \geq 0, \sum_{\mathrm{i}}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} \leq 1\right\}, \mathrm{t}_{0}=1-\sum_{1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}}$
d) Prove that for $\mathrm{k} \geq 0$
$\mathrm{f}\left[\mathrm{x}_{0}, \ldots . . ., \mathrm{x}_{\mathrm{k}}\right]=\frac{1}{\mathrm{k}!\mathrm{h}^{\mathrm{k}}} \Delta^{\mathrm{k}} \mathrm{f}_{0}$
where $\mathrm{f}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right) \& \mathrm{f}_{\mathrm{i}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$

UNIT - III

3. a) To obtain a minimax polynomial approximation $a_{1}^{*}(x)$ for the functions $f(x)=e^{x}$ on the interval [-1, 1].
b) If $\left\{\phi_{\mathrm{n}}(\mathrm{x}) \mid \mathrm{n} \geq 0\right\}$ is an orthogonal family of polynomials on (a, b) with weight function $\omega(\mathrm{x}) \geq 0$. Then prove that the polynomial $\phi_{\mathrm{n}}(\mathrm{x})$ has exactly n distinct real roots in the open interval (a, b)

OR

c) Discuss the Gram-Schmidt theorem.
d) Find linear least square approximation of the function $f(x)=e^{x}$ on $-1 \leq x \leq 1$.

UNIT - IV

4. a) Obtain simple trapezoidal rule with error.
b) Obtain simple Simpson's rule of integration, obtain error estimate.

OR

c) For n even, assume $f(x)$ is $n+2$ times continuously differentiable on $[a, b]$ then prove that $I(f)-I_{n}(f)=c_{n} h^{n+3} f^{(n+2)}(n)$ some $n \in[a, b]$ with $\mathrm{c}_{\mathrm{n}}=\frac{1}{(\mathrm{n}+2)!} \int_{0}^{\mathrm{n}} \mu^{2}(\mu-1) \ldots . .(\mu-\mathrm{n}) \mathrm{d} \mu$.
d) Derive Newton-Cotes integration formula for $\mathrm{n}=1$.
5. a) Apply Newton's method to the function
$f(x)= \begin{cases}\sqrt[3]{x^{2}}, & x \geq 0 \\ -\sqrt[3]{x^{2}}, & x \leq 0\end{cases}$
with root $\alpha=0$, what is the behaviour of iterates? Do they converge, and if so, at what rate?
b) Obtain the expression for $\mathrm{p}_{1}(\mathrm{x})$ by Lagrange interpolation.
c) For $\mathrm{f}, \mathrm{g} \in \mathrm{c}[\mathrm{a}, \mathrm{b}]$ then prove that $\|\mathrm{f}+\mathrm{g}\|_{2} \leq\|\mathrm{f}\|_{2}+\|\mathrm{g}\|_{2}$
d) Discuss the open Newton-Cotes formula.

