M.Sc.(Mathematics) (New CBCS Pattern) Semester - I **Elective Course Code : PSCMTH05(A) - Numerical Analysis Paper-V**

P. Pages: 2

Time : Three Hours

GUG/S/23/13741

Max. Marks: 100

Notes: 1. Solve all five questions. 2.

Each questions carries equal marks.

UNIT - I

1. Assume f(x), f'(x) and f''(x) are continuous for all x in some neighbourhood of α , and 10 a) assume $f(\alpha) = 0$, $f'(\alpha) \neq 0$ then prove that if x_0 is chosen sufficiently close to α the iterates x_n , $n \ge 0$ of $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, will converge to α .

- 10 b) Discuss the secant method and prove convergence of x_n to α under suitable condition. OR
- Consider Newton's method for finding the positive square root of a > 0. Derive the 10 c) following result, assuming $x_0 > 0$, $x_0 \neq \sqrt{a}$.

2

i)
$$x_{n+1} = \frac{1}{2}(x_n + a/x_n)$$
 ii) $x_{n+1}^2 - a = \left[\frac{x_n^2 - a}{2x_n}\right]^2$, $n \ge 0$

- iii) The iterates $\{x_n\}$ are strictly decreasing sequence for $n \ge 1$.
- iv) $e_{n+1} = -e_n^2/2x_n$ with $e_n = \sqrt{a} x_n$.
- d) Apply Newton's method to the following function.

$$f(x) = \begin{cases} \sqrt{x}, & x \ge 0\\ -\sqrt{-x}, & x \le 0 \end{cases}$$

with root $\alpha = 0$, what is the behaviour of the iterates? Do they converge and if so, at what rate?

UNIT - II

- Show that for any two functions f and g and for any two constants α and β . 2. 10 a) $\Delta^{r}(\alpha f(x) + \beta g(x)) = \alpha \Delta^{r} f(x) + \beta \Delta^{r} g(x), r \ge 0$
 - Find the Hermite interpolating polynomial for which b) 10 p(a) = f(b), p'(a) = f'(a)p(b) = f(b), p'(b) = f'(b)

OR

Let $x_0, ..., x_n$ be distinct real numbers and let f(x) be n times continuously differentiable 10 c) on interval $H\{x_0,...,x_n\}$ then show that-

$$f[x_0,, x_n] = \iint_{T_n} \dots \iint_{T_n} f^{(n)}(t_0 x_0 + + t_n x_n) dt_1 \dots dt_n$$
$$T_n = \left\{ (t_1,, t_n) \middle/ t_1 \ge 0, \dots \dots t_n \ge 0, \sum_i^n t_i \le 1 \right\}, t_0 = 1 - \sum_i^n t_i$$

GUG/S/23/13741

P.T.O

10

d) Prove that for $k \ge 0$ $f[x_{0,...,x_{k}}] = \frac{1}{k! h^{k}} \Delta^{k} f_{0}$ where $f_{0} = f(x_{0}) \& f_{i} = f(x_{i})$

Discuss the Gram-Schmidt theorem.

UNIT - III

- 3. a) To obtain a minimax polynomial approximation $a_1^*(x)$ for the functions $f(x) = e^x$ on the interval [-1, 1].
 - b) If $\{\phi_n(x)|n \ge 0\}$ is an orthogonal family of polynomials on (a, b) with weight function **10** $\omega(x) \ge 0$. Then prove that the polynomial $\phi_n(x)$ has exactly n distinct real roots in the open interval (a, b)

OR

- d) Find linear least square approximation of the function $f(x) = e^x$ on $-1 \le x \le 1$. 10
 - UNIT IV

4. Obtain simple trapezoidal rule with error. 10 a) Obtain simple Simpson's rule of integration, obtain error estimate. 10 b) OR c) For n even, assume f(x) is n+2 times continuously differentiable on [a, b] then prove 10 that $I(f) - I_n(f) = c_n h^{n+3} f^{(n+2)}(n)$ some $n \in [a, b]$ with $c_n = \frac{1}{(n+2)!} \int_{0}^{n} \mu^2 (\mu - 1) \dots (\mu - n) d\mu$. Derive Newton-Cotes integration formula for n = 1. 10 d) 5. Apply Newton's method to the function 5 a) $f(x) = \begin{cases} \sqrt[3]{x^2}, & x \ge 0\\ -\sqrt[3]{x^2}, & x \le 0 \end{cases}$

with root $\alpha = 0$, what is the behaviour of iterates? Do they converge, and if so, at what rate?

b)	Obtain the expression for $p_1(x)$ by Lagrange interpolation.	5
c)	For $f, g \in c[a, b]$ then prove that $ f + g _2 \le f _2 + g _2$	5
d)	Discuss the open Newton-Cotes formula.	5

GUG/S/23/13741

c)

10

2