M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-I PSCMTH05 (A) - Optional Paper : Numerical Analysis

P. Pages: 2

Time : Three Hours

* 3 4 4 5 *

GUG/W/22/13741

Max. Marks: 100

Notes : 1. Solve all **five** question.

2. Each question carries equal marks.

UNIT – I

1. a) Let f(x) f'(x), f''(x) are continuous for all value of x in some interval containing α , and 10 assume f'(α) \neq 0 then prove that if the initial guesses x_0 and x_1 are chosen sufficiently close to α , the iterates x_n of $x_{n+1} = x_n - f(x_n)$. $\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$, $n \ge 1$ will converge to α the order of convergence will be $P = (1 + \sqrt{5})/2 \approx 1.62$

b) Assume f(x), f'(x) f''(x) are continuous for all x in some neighbourhood of α and 10 assume $f(\alpha) = 0$, $f'(\alpha) \neq 0$ then prove that if x_0 is chosen sufficiently close to α the iterates $x_n, n \ge 0$ of $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, will converge to α

OR

c) Apply the Newton's method for the function $f(x) = \sqrt{x}$, x > 0

$$(x) = \sqrt{x}$$
, $x \ge 0$
 $= -\sqrt{-x}$, $x < 0$

With root $\alpha = 0$, what is the behavior of the interates? Do they converge, and if 50 at what rate?

d) Discuss Muller's method for finding roots of a polynomial. Discuss why Muller's method 10 is better than the secant method.

UNIT – II

2. a) Define nth order of Newton's divided difference of a function of namely 10 $f[x_0, ---, x_n] = \frac{f(x_1, ----x_n) - f[x_0, ----, x_{n-1}]}{x_n - x_0}$

b) Prove that for $k \ge 0$ $f[x_0, x_1, ---x_k] = \frac{1}{k!h^k} \Delta^k f_0$ where $f_0 = f(x_0) \& f_i = f(x_i)$ 10

OR

c) For any two functions f and g and for any two constant's α and β $\Delta^{r} (\alpha f(x) + \beta g(x)) = \alpha \Delta^{r} f(x) + \beta \Delta^{r} g(x), r \ge 0$ 10

1

d)

For the basis functions $\ell_{j,n}(x)$ given by $\ell_i(x) = \prod_{j \neq i} \left(\frac{x - x_j}{x_i - x_j} \right) i = 1, 2 - - - h$

Then prove that for $n \ge 1$, $\sum_{j=0}^{h} \ell_{j,n}(x) = 1$ for all x

UNIT – III

- 3. a) Let f(x) be continuous for $a \le x \le b$ and let $\in 70$, then prove that there is a polynomial 10 p(x) for which $|f(x)-p(x)| \le t$, $a \le x \le b$
 - b) Find the liner least square approximation of the function $f(x) = e^x$, $-1 \le x \le 1$ 10

OR

- c) Prove that, for $f,g \in \subset [a,b],$ $|(f,g)| \leq ||f||_2 ||g||_2$
- d) To obtain a minimax polynomial approximation $a_1^*(x)$ for the function $f(x) = e^x$ on the interval [-1,1]

$\mathbf{UNIT} - \mathbf{IV}$

4.	a)	Obtain the composite trapezoidal rule with error. Find the expression for the asymptotic error.	10
	b)	Obtain the expression for Peano-Kernel error formula.	10
		OR	
	c)	Obtain the formula for the simple Simpson's rule of integration, obtain error estimate.	10
	d)	Derive Newton-cotes integration formula for $n = 1$	10
5.	a)	Show that, If $g(x)$ be continuous for $a \le x \le b$ and assume that $a \le g(x) \le b$ for $a \le x \le b$ then $x = g(x)$ has at least one solution in $[a, b]$	5
	b)	Obtain the expression for $P_1(x)$ by Lagrange interpolation	5
	c)	For $f, g \in C[a, b]$ then prove that $ f + g _2 \le f _2 + g _2$	5
	d)	Obtain simple trapezoidal rule	5

10

10