Notes: 1. Solve all five question.
2. Each question carries equal marks.

UNIT - I

1. a) Let $f(x) f^{\prime}(x), f^{\prime \prime}(x)$ are continuous for all value of x in some interval containing α, and assume $f^{\prime}(\alpha) \neq 0$ then prove that if the initial guesses x_{0} and x_{1} are chosen sufficiently close to α, the iterates x_{n} of $x_{n+1}=x_{n}-f\left(x_{n}\right) \cdot \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, n \geq 1$ will converge to α the order of convergence will be $\mathrm{P}=(1+\sqrt{5}) / 2 \simeq 1.62$
b) Assume $f(x), f^{\prime}(x) f^{\prime \prime}(x)$ are continuous for all x in some neighbourhood of α and assume $f(\alpha)=0, f^{\prime}(\alpha) \neq 0$ then prove that if x_{0} is chosen sufficiently close to α the iterates $x_{n}, n \geq 0$ of $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$, will converge to α

OR

c) Apply the Newton's method for the function

$$
\begin{array}{rlrl}
f(x) & =\sqrt{x} & & , x \geq 0 \\
& =-\sqrt{-x} & , x<0
\end{array}
$$

With root $\alpha=0$, what is the behavior of the interates? Do they converge, and if 50 at what rate?
d) Discuss Muller's method for finding roots of a polynomial. Discuss why Muller's method is better than the secant method.

UNIT - II

2. a) Define $\mathrm{n}^{\text {th }}$ order of Newton's divided difference of a function of namely

$$
\mathrm{f}\left[\mathrm{x}_{0},---, \mathrm{x}_{\mathrm{n}}\right]=\frac{\mathrm{f}\left(\mathrm{x}_{1},----\mathrm{x}_{\mathrm{n}}\right)-\mathrm{f}\left[\mathrm{x}_{0},---, \mathrm{x}_{\mathrm{n}-1}\right]}{\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{0}}
$$

b) Prove that for $\mathrm{k} \geq 0$
$\mathrm{f}\left[\mathrm{x}_{0}, \mathrm{x}_{1},----\mathrm{x}_{\mathrm{k}}\right]=\frac{1}{\mathrm{k}!\mathrm{h}^{\mathrm{k}}} \Delta^{\mathrm{k}} \mathrm{f}_{0}$ where $\mathrm{f}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right) \& \mathrm{f}_{\mathrm{i}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$

OR

c) For any two functions f and g and for any two constant's α and β

$$
\Delta^{\mathrm{r}}(\alpha \mathrm{f}(\mathrm{x})+\beta \cdot \mathrm{g}(\mathrm{x}))=\alpha \Delta^{\mathrm{r}} \mathrm{f}(\mathrm{x})+\beta \Delta^{\mathrm{r}} \mathrm{~g}(\mathrm{x}), \mathrm{r} \geq 0
$$

d) For the basis functions $\ell_{j}, n(x)$ given by $\ell_{i}(x)=\prod_{j \neq i}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right) i=1,2----h$ Then prove that for $\mathrm{n} \geq 1, \sum_{\mathrm{j}=0}^{\mathrm{h}} \ell_{\mathrm{j}, \mathrm{n}}(\mathrm{x})=1$ for all x

UNIT - III

3. a) Let $f(x)$ be continuous for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and let $\in 70$, then prove that there is a polynomial $p(x)$ for which $|f(x)-p(x)| \leq t, \quad a \leq x \leq b$
b) Find the liner least square approximation of the function $f(x)=e^{x},-1 \leq x \leq 1$

OR

c) Prove that, for
$\mathrm{f}, \mathrm{g} \in \subset[\mathrm{a}, \mathrm{b}]$,
$|(\mathrm{f}, \mathrm{g})| \leq\|\mathrm{f}\|_{2}\|\mathrm{~g}\|_{2}$
d) To obtain a minimax polynomial approximation $\mathrm{a}_{1}^{*}(\mathrm{x})$ for the function $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ on the interval [-1,1]

UNIT - IV

4. a) Obtain the composite trapezoidal rule with error. Find the expression for the asymptotic error.
b) Obtain the expression for Peano-Kernel error formula.

OR

c) Obtain the formula for the simple Simpson's rule of integration, obtain error estimate.
d) Derive Newton-cotes integration formula for $\mathrm{n}=1$
5. a) Show that,

If $\mathrm{g}(\mathrm{x})$ be continuous for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and assume that $\mathrm{a} \leq \mathrm{g}(\mathrm{x}) \leq \mathrm{b}$ for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ then $\mathrm{x}=\mathrm{g}(\mathrm{x})$ has at least one solution in [a, b]
b) Obtain the expression for $\mathrm{P}_{1}(\mathrm{x})$ by Lagrange interpolation
c) For $\mathrm{f}, \mathrm{g} \in \mathrm{C}[\mathrm{a}, \mathrm{b}]$ then prove that $\|\mathrm{f}+\mathrm{g}\|_{2} \leq\|\mathrm{f}\|_{2}+\|\mathrm{g}\|_{2}$
d) Obtain simple trapezoidal rule

