M.Sc. - I (Mathematics) (New CBCS Pattern) Semester - I
 PSCMTH04-Linear Algebra

P. Pages : 2

GUG/S/23/13740
Time : Three Hours
$\star 24766 \star$

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let V be a vector space and W a subset of V . Then prove that W is a subspace of V if and only if the following three conditions hold for the operations defined in V .
i) $0 \in \mathrm{~W}$
ii) $x+y \in W$ whenever $x \in W$ and $y \in W$
iii) $c x \in W$ whenever $c \in F$ and $x \in W$
b) Let S be a linearly independent subset of a vector space V, and let v be a vector in V that Is not is S. Then prove that $\operatorname{SU}\{v\}$ is linearly dependent if and only if $v \in \operatorname{span}(S)$.

OR

c) Let V be a vector space and $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ be distinct vectors in V . Prove that $\beta=\left\{u_{1}, u_{2}, \ldots ., u_{n}\right\}$ is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β.
d) State and prove Replacement theorem.

UNIT - II

2. a) State and prove dimension theorem.
b) Let V and W be vector spaces over F , and suppose that $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{\mathrm{n}}\right\}$ is a basis for V prove that for $\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots ., \mathrm{W}_{\mathrm{n}}$ in W , there exists exactly one linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ such that $\mathrm{T}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{w}_{\mathrm{i}}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

OR

c) Let V and W be finite-dimensional vector spaces (over the same field). Then prove that V is isomorphic to W if and only if $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{W})$.
d) Prove that the solution space for $y^{\prime}+a_{0} y=0$ is of dimension 1 and has $\left\{e^{-a} 0^{t}\right\}$ as a basis.

UNIT - III

3. a) Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigen value of T having multiplicity m. Then prove that $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.
b) Find all the eigen vectors of the matrix.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)
$$

OR

c) Prove that a linear operator T on a finite dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigen spaces of T .
d) State and prove Cayley-Hamilton theorem.

UNIT - IV

4. a) Let V be an inner product space over F . Then prove that for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}$ the following statements are true.
i) $\quad|\langle x, y\rangle| \leq\|x\|-\|y\|$
ii) $\quad\|x+y\| \leq\|x\|+\|y\|$
b) Let V be a finite-dimensional inner product space over F , and let $\mathrm{g}: \mathrm{V} \rightarrow \mathrm{F}$ be a linear transformation. Prove that there exists a unique vector $y \in V$ such that $g(x)=\langle x, y\rangle$ for all $x \in V$.

OR

c) Let T be a linear operator on a finite dimensional vector space V such that the characteristic polynomial of T splits. Suppose that λ is an eigen value of T with multiplicity m . Then prove that.
i) $\operatorname{dim}\left(k_{\lambda}\right) \leq m$
ii) $\mathrm{k}_{\lambda}=\mathrm{N}\left((\mathrm{T}-\lambda \mathrm{I})^{\mathrm{m}}\right)$
d) Let $\mathrm{p}(\mathrm{t})$ be a minimal polynomial of a linear operator T on a finite-dimensional vector space
V. Prove that
i) For any polynomial $g(t)$, if $g(t)=T_{0}$, then $p(t)$ divides $g(t)$. In particular, $p(t)$ divides the characteristic polynomial of T .
ii) The minimal polynomial of T is unique.
5. a) Prove that: if x, y and z are vectors in a vector space V such that $x+z=y+z$, then $x=y$.
b) Sow that the linear transformation $T: F^{2} \rightarrow F^{2}$ defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}\right)$ is one-to-one and onto.
c) Let $A \in M_{n \times n}(F)$. Prove that a scalar λ is an eigen value of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
d) Let $A \in M_{m \times n}(F)$. Then prove that $\operatorname{rank}(A * A)=\operatorname{rank}(A)$.

