M.Sc. - I (Mathematics) (New CBCS Pattern) Semester - I PSCMTH04 - Linear Algebra

P. Pages: 2 GUG/S/23/13740 Time : Three Hours Max. Marks: 100 Solve all **five** questions. Notes : 1. 2. All questions carry equal marks. UNIT - I Let V be a vector space and W a subset of V. Then prove that W is a subspace of V if and 10 1. a) only if the following three conditions hold for the operations defined in V. $0 \in W$ i) ii) $x + y \in W$ whenever $x \in W$ and $y \in W$ iii) $cx \in W$ whenever $c \in F$ and $x \in W$ Let S be a linearly independent subset of a vector space V, and let v be a vector in V that 10 b) Is not is S. Then prove that $SU\{v\}$ is linearly dependent if and only if $v \in span(S)$. OR Let V be a vector space and $u_1, u_2, ..., u_n$ be distinct vectors in V. Prove that 10 c) $\beta = \{u_1, u_2, \dots, u_n\}$ is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β . 10 d) State and prove Replacement theorem. UNIT - II State and prove dimension theorem. 10 2. a) 10 b) Let V and W be vector spaces over F, and suppose that $\{v_1, v_2, ..., v_n\}$ is a basis for V prove that for $W_1, W_2, ..., W_n$ in W, there exists exactly one linear transformation $T: V \rightarrow W$ such that $T(v_i) = w_i$ for i = 1, 2, ..., n.

OR

- c) Let V and W be finite-dimensional vector spaces (over the same field). Then prove that V 10 is isomorphic to W if and only if $\dim(V) = \dim(W)$.
- d) Prove that the solution space for $y' + a_0 y = 0$ is of dimension 1 and has $\{e^{-a_0 t}\}$ as a basis. **10**

UNIT - III

3. a) Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigen 10 value of T having multiplicity m. Then prove that $1 \le \dim(E_{\lambda}) \le m$.

b) Find all the eigen vectors of the matrix. (1 - 2)

 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$

OR

- c) Prove that a linear operator T on a finite dimensional vector space V is diagonalizable if **10** and only if V is the direct sum of the eigen spaces of T.
- d) State and prove Cayley-Hamilton theorem.

UNIT - IV

- 4. a) Let V be an inner product space over F. Then prove that for all $x, y \in V$ the following 10 statements are true.
 - i) $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}||$
 - ii) $||x+y|| \le ||x|| + ||y||$
 - b) Let V be a finite-dimensional inner product space over F, and let $g: V \to F$ be a linear 10 transformation. Prove that there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$.

OR

- c) Let T be a linear operator on a finite dimensional vector space V such that the characteristic **10** polynomial of T splits. Suppose that λ is an eigen value of T with multiplicity m. Then prove that.
 - i) $\dim(k_{\lambda}) \le m$
 - ii) $k_{\lambda} = N((T \lambda I)^m)$
- d) Let p(t) be a minimal polynomial of a linear operator T on a finite-dimensional vector space 10
 V. Prove that
 - i) For any polynomial g (t), if g (t) = T_0 , then p(t) divides g(t). In particular, p(t) divides the characteristic polynomial of T.
 - ii) The minimal polynomial of T is unique.
- 5. a) Prove that: if x, y and z are vectors in a vector space V such that x + z = y + z, then x = y. 5
 - b) Sow that the linear transformation $T: F^2 \to F^2$ defined by $T(a_1, a_2) = (a_1 + a_2, a_1)$ is one-to-one and onto. 5
 - c) Let $A \in M_{n \times n}(F)$. Prove that a scalar λ is an eigen value of A if and only if $det(A \lambda I_n) = 0$.
 - d) Let $A \in M_{m \times n}(F)$. Then prove that $rank(A^*A) = rank(A)$.

10

5