Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that, in any vector space V , the following statements are true:
i) $\quad \mathrm{ox}=0$ for each $\mathrm{x} \in \mathrm{V}$
ii) $\quad(-a) x=-(a x)=a(-x)$ for each $a \in F$ and each $x \in V$
iii) ao $=0$ for each $a \in F$
b) Prove that the span of any subset S of a vector space V is a subspace of V that contain S.

Moreover, also prove that, any subspace of V that contains S must also contain the span of S.

OR

c) State and prove replacement theorem.
d) Prove that : If W is a subspace of a finite - dimensional vector space V , then W is finite dimensional and $\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{V})$. Moreover if, $\operatorname{dim}(\mathrm{W})=\operatorname{dim}(\mathrm{V})$, then $\mathrm{V}=\mathrm{W}$.
UNIT = II
2. a) Let V and W be finite - dimensional vector spaces of equal dimension, and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear. Then prove that the following are equivalent.
i) T is one - to - one
ii) T is onto
iii) $\quad \operatorname{rank}(\mathrm{T})=\operatorname{din}(\mathrm{V})$
b) Let T be an invertible linear transformation from V to W . Then prove that V is finite dimensional if and only if W is finite - dimensional. In this case, $\operatorname{dim}(\mathrm{V})=\operatorname{din}(\mathrm{W})$

OR

c) Let V and W be finite - dimensional vector spaces over F of dimensions n and m ,
respectively, and let β and γ be ordered bases for V and W , respectively. Then prove that the function $\phi_{\beta}^{\gamma}: \mathrm{L}(\mathrm{V}, \mathrm{W}) \rightarrow \mathrm{M}_{\mathrm{m} \times \mathrm{n}}(\mathrm{F})$, defined by $\phi_{\beta}^{\gamma}(\mathrm{T})=[\mathrm{T}]_{\beta}^{\gamma}$ for $\mathrm{T} \in \mathrm{L}(\mathrm{V}, \mathrm{W})$, is an isomorphism.
d) Prove that the differential operator $\mathrm{D}-\mathrm{CI}: \mathrm{C}^{\infty} \rightarrow \mathrm{C}^{\infty}$ is onto for any complex number C .

UNIT - III

3. a) Find all eigenvectors of the matrix.
b) Prove that the characteristic polynomial of any diagonalizable linear operator on a vector space V over a filed F splits over F.

OR

c) Show that $A=\left(\begin{array}{cc}0 & -2 \\ 1 & 3\end{array}\right)$ is diagonalizable and find a 2×2 matrix θ such that $\theta^{-1} \mathrm{~A} \theta$ is a diagonal matrix. Use this result to compute A^{n} for any positive integer n.
d) State and prove Cayley - Hamilton theorem.

UNIT - IV

4. a) Let V be a finite - dimensional inner product space, and let T be a linear operator on V .

Then prove that there exists a unique function $T^{*}: V \rightarrow V$ such that $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$ for all $x, y \in V$. Furthermore, show that T^{*} is linear.
b) Let T be a linear operator on a finite - dimensional inner product space V . If T has an eigenvector, then prove that so does T^{*}.

OR

c) Let T be a linear operator on a finite - dimensional vector space V such that the characteristic polynomial of T splits. Suppose that λ is an eigenvalue of T with multiplicity m . Then prove that.
i) $\operatorname{dim}\left(k_{\lambda}\right) \leq m$
ii) $\quad \mathrm{k}_{\lambda}=\mathrm{N}\left((\mathrm{T}-\lambda \mathrm{I})^{\mathrm{m}}\right)$
d) Let T be a linear operator on a finite - dimensional vector space, V and let $\mathrm{P}(\mathrm{t})$ be the minimal polynomial of T. Prove that a scalar λ is an eigenvalue of T if and only if $\mathrm{p}(\lambda)=0$
5. a) Let V be a vector space, and let $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \subseteq \mathrm{~V}$. If S_{1} is linearly dependent, then prove that S_{2} is linearly dependent.
b) Let V and W be vector spaces, and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear. Then prove that T is one - to - one if and only if $\mathrm{N}(\mathrm{T})=\{0\}$.
c) Find the eigenvalues of $A=\left(\begin{array}{cc}i & 1 \\ 2 & -i\end{array}\right)$ for $F=C$.
d) Prove that in an inner product space $V\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in V$.

