M.Sc.(Mathematics) (New CBCS Pattern) Semester - I PSCMTH03 - Topology-I

	iges : e : Th	Hours GUG/S/23/ * 2 4 7 5 * Max. Mark	
	Note	es : 1. All five questions are compulsory. 2. Each question carries equal marks. UNIT – I	
1.	a)	Prove that the set of all real numbers is uncountable.	10
	b)	Prove that every infinite set contains a denumerable subset.	10
		OR	
	c)	Prove that i) $N_0N_0 = N_0$ ii) $N_0c = c$ iii) $cc = c$ Where N denotes Hebrew letter aleph.	10
	d)	Prove that the union of a denumerable number of denumerable sets is a denumerable set.	10
		UNIT – II	
2.	a)	If A, B are subsets of the topological space (X, τ) , then prove that the derived set has the following properties: i) If $A \subseteq B$, then $d(A) \subseteq d(B)$ ii) $d(A \cup B) = d(A) \cup d(B)$	10
	b)	Prove that a set F is a closed subset of a topological space iff F ^c is an open subset of the space.	10
		OR	
	c)	Prove that for any set E in a topological space $\subset (E) = E \cup d(E)$	10
	d)	Let $X = \{a, b, c\} \& let$ $\tau = \{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ Find i) $d(\{b\})$ ii) $d(X)$	10

1

UNIT – III

3.	a)	If C is a connected set and $C \subseteq E \subseteq \subset (C)$, then prove that E is a connected set.	10		
	b)	If E is a subset of a subspace (X^*, τ^*) of a topological space (X, τ) , then prove that E is τ^* - compact iff it is τ - compact. OR	10		
	c)	If F is a continuous mapping of (X, τ) into (X^*, τ^*) , then prove that F maps every	10		
		connected subset of X onto a connected subset of X^*			
	d)	Prove that a mapping F of X into X [*] is open iff $F(i(E)) \subseteq i^*(F(E))$ for every $E \subseteq X$.	10		
UNIT – IV					
4.	a)	Prove that a topological space X is a T_1 - space iff every subset consisting of exactly one point is closed.	10		
	b)	Prove that in a Hausdorff space, a convergent sequence has a unique limit.	10		
		OR			
	c)	Prove that in a second axiom space, ever collection of nonempty disjoint, open sets is countable.	10		
	d)	Prove that a topological space X is normal iff for any closed set F and open set G containing F, there exists an open set G^* such that $F \subseteq G^*$ and $C(G^*) \subseteq G$	10		
5.	a)	Prove that every infinite set is equipotent to a proper subset of itself.	5		
	b)	Define i) Topological space. ii) Limit point.	5		
	c)	Define: i) Open mapping. ii) Closed mapping. iii) Homeomorphism.	5		
	d)	Define: i) First axiom space. ii) Second axiom space.	5		
