M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-I PSCMTH03 : Topology-I

	Pages : ne : Tl	2 hree Hours $* 3 4 4 3 *$	GUG/W/22/1373 9 Max. Marks : 100			
	Not	es: 1. All five questions are compulsory. 2. Each question carries equal marks.				
UNIT – I						
1.	a)	Prove that the union of a denumerable number of denumerable sets is a dealer	numerable set.	10		
	b)	Prove that the set of all real numbers is uncountable.		10		
		OR				
	c)	Prove that $2^a > a$ for every cardinal number a.		10		
	d)	Prove that the set of all rational numbers is denumerable.		10		
UNIT – II						
2.	a)	Prove that for any set E in a topological space, $c(E) = E \cup d(E)$.		10		
	b)	Prove that a set F is a closed subset of a topological space iff F^{C} is an ope space.	n subset of the	10		
OR						
	c)	Prove that for any set E in a topological space (X, τ) , $i(E) = \left[C(E^{C})\right]^{C}$.		10		
	d)	Prove that τ^* is a topology for X^* .		10		
UNIT – III						
3.	a)	If C is a connected subset of a topological space (X, τ) which has a separathen prove that either C \subseteq A or C \subseteq B.	tion $X = A B$,	10		
	b)	Prove that a compact subset of a topological space is countably compact.		10		
	OR					
	c)	If f is a continuous mapping of (X, τ) into (X^*, τ^*) , then prove that f maccompact subset of X onto a compact subset of X^* .	ps every	10		

d) If f is a homeomorphism of X onto X^* , then prove that f maps every isolated subset of X 10 onto an isolated subset of X^* .

UNIT – IV

4.	a)	Prove that a topological space X is a T_0 - space iff the closures of distinct points are distinct.	
	b)	Prove that every compact subset E of a Hausdorff space X is closed.	10
		OR	
	c)	Prove that a topological space X satisfying the first axiom of countability is a Hausdorff space iff every convergent sequence has a unique limit.	10
	d)	Prove that a topological space X is regular iff for every point $x \in X$ and open set G containing x there exists an open set G^* such that $x \in G^*$ and $C(G^*) \subseteq G$.	10
5.	a)	Define i) Equipotent sets ii) Denumerable set iii) Countable set	5
	b)	Define i) Closed set ii) Closure of a set iii) Interior of a set	5
	c)	Define i) Connected set ii) Compact set iii) Countably compact set.	5
	d)	Define i) T_0 - space ii) T_1 - space iii) T_2 - space	5
