P. Pages: 2

Time : Three Hours

Max. Marks: 100

Notes : 1. Solve **all five** questions.

2. Each questions carries equal marks.

UNIT – I

- 1. a) Prove that the sequence of functions $\{f_n\}$ defined on E, converges uniformly on E if and 10 only if, for every $\in > 0$, there exist an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies $|f_n(x) f_m(x)| < \in$
 - b) If K is a compact metric space, $f_n \in C(K)$ for n = 1, 2, 3---- and if $\{f_n\}$ converges 10 uniformly on K then prove that $\{f_n\}$ is equal continuous on K.

OR

- c) Prove that, if f is a continuous complex function on [a, b] then there exist a sequence of polynomial p_n such that $\lim_{n\to\infty} p_n(x) = f(x)$ uniformly on [a, b]. 10
- d) For n = 1, 2, ----x real put $f_n(x) = \frac{x}{1 + nx^2}$ show that $\{f_n\}$ converges uniformly to a function f and that the equation $f'(x) = \lim_{n \to \infty} f'_n(x)$ is correct if $x \neq 0$ but false if x = 0

UNIT – II

2. a) Prove that suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable at a point $x \in E$ then the partial derivative $(D_j f_i)(x)$ exist and 10

$$f'(x)e_{j} = \sum_{i=1}^{m} (D_{j}f_{i})(x)u_{i}, 1 \le J \le n$$

b) State and prove Implicit function theorem.

OR

- c) If X is complete metric space and if ϕ is the contraction mapping of X into X then prove 10 that there exist $x \in X$ such that $\phi(n) = x$
- d) State and prove the inverse function theorem.

UNIT – III

3. a) Prove that any atlas $\mu = \{U_{\alpha}, \phi_{\alpha}\}$ on a locally Euclidean space is contained in a unique 10 maximal atlas.

1

10

10

- b) Prove that the following are smooth manifolds.
 - i) General linear graphs.
 - ii) Unit circle in the (x, y) plane

OR

- c) Let $\{U_{\alpha}, \phi_{\alpha}\}$ be an atlas on a locally Euclidean space. If two charts $(v, \psi) \& (\omega, \sigma)$ are **10** both compatible with the atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ the prove that they are compatible with each other.
- d) Prove that the real line with two origins and sphere with hair are not topological 10 manifolds.

UNIT - IV

- 4. a) Let M & N be manifolds and $\pi: M \times N \to M \pi(p,q) = p$, the projection to the first factor 10 prove that π is a C^{∞} map
 - b) State and prove the inverse function theorem for manifolds.

OR

- c) If (U,ϕ) is a chart on a manifold M of dimension n then prove that the coordinate map $\phi: U \rightarrow \phi(U) \subseteq \mathbb{R}^n$ is a diffeomorphism. 10
- d) Suppose $F: N \to M$ is C^{∞} at $P \in N$. If (U, ϕ) is any chart about P in N and (v, ψ) is any chart about F(P) in M then prove that $\psi \circ F \circ \phi^{-1}$ is C^{∞} at $\phi(P)$.
- 5. a) If $\{f_n\}$ be a sequence of continuous function on E and $f_n \to f$ uniformly on E then prove 5 that f is continuous on E.
 - b) Suppose that E open set in $\mathbb{R}^{n} f: E \to \mathbb{R}^{n}$ and $x \in E$ and $\lim_{h \to 0} \frac{|f(x+h)-f(x)-Ah|}{|h|} = 0$ With $A = A_{1}$ and $A = A_{2}$ then prove that $A_{1} = A_{2}$
 - c) Show that S¹ is a smooth manifold.
 d) Define:

 i) Smooth function at a point in manifold.
 - ii) Diffeomorphism.

10

10