GUG/W/22/13738

P. Pages: 2

P. Pages : 2 Time : Three Hours		$\frac{2}{12}$ Three Hours $\frac{1}{3} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{4}$	GUG/W/22/13738 Max. Marks : 100	
	Not	es : 1. Solve all five questions. 2. All questions carry equal marks. UNIT – I		
1.	a)	Prove that the sequence of functions $\{f_n\}$, defined on E, converges uniformly on E iff for every $\in > 0$ there exists an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies $ f_n(x) - f_m(x) \le \epsilon$		
	b)	Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a that $\{f_n\}$ converges uniformly on [a,b], to a function f, and $f'(x) = \lim_{n \to \infty} f'_n(x) (a \le x \le b)$.	that $\{f_n(x_0)\}$ (,b] then prove	10
		$n \to \infty$		
	c)	Prove that there exists a real continuous function on the real line which is differentiable.	nowhere	10
	d)	 If K is compact, if f_n ∈ τ(k) for n = 1, 2, 3 and if {f_n} is point wise equicontinuous on K, then prove that i) {f_n} is uniformly bounded on K. ii) {f_n} contains a uniformly convergent subsequence. 	bounded and	10
		UNIT – II		
2.	a)	Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable at a point prove that the partial derivative $(D_j f_i)(x)$ exist and $f'(x)e_j = \sum_{i=1}^m (D_j f_i)(x)e_i = \sum_{i=1}^m (D_i f_i)(x)e_i = \sum_{i=1}^m$	t $x \in E$. Then $x u_i, 1 \le j \le n$	10
	b)	If f is a differentiable mapping of a connected open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , a for every $x \in E$. prove that f is constant in E. OR	nd if $f'(x) = 0$	10
	c)	Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , then prove that $f \in \tau^1(E)$ if partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m$, $1 \le j \le m$	and only if the n.	10
	d)	Suppose f is a τ^1 – mapping of an open set $E \subset R^n$ into R^n , f '(a) is inver a $\in E \& b = f(a)$ then prove that there exist open sets U & V in R^n such that f is one-to-one on U & f(U) = V	tible for some at $a \in U, b \in V$,	10
		UNIT – III		
3.	a)	Let $\{U_{\alpha}, \phi_{\alpha}\}\$ be an atlas on a locally Euclidean space. If two charts $(V, \phi_{\alpha})\$ both compatible with the atlas $\{(U_{\alpha}, \phi_{\alpha})\}\$ then prove that they are compa	(W,σ) are the with each	10
	b)	other. Prove that the following are Smooth manifolds i) Euclidean space ii) Open subset of a manifold iii) Manifolds of dimension zero iv) Graph of a smooth function OR	1	10
GUG/W/22/13738 1				P.T.O

- c) Prove that any atlas $\mu = \{(U_{\alpha}, \phi_{\alpha})\}$ on a locally Euclidean space is contained in a unique **10** maximal atlas.
- d) Prove that, the real line with two origins and sphere with hair are not topological manifolds.

UNIT – IV

- **4.** a) Prove that
 - i) Suppose $F: N \to M$ is C^{∞} at $p \in N$. If (U, ϕ) is any chart about p in N & (U, ϕ) is any chart about f(p) in M, then $\Psi o F o \phi^{-1}$ is C^{∞} at (ϕ, p) .
 - ii) If $F: N \to M \& G: M \to P$ are C^{∞} maps of manifolds, then the composite $GoF: N \to P$ is C^{∞} .
 - b) Let N & M be smooth manifolds, and $F: N \to M$ a continuous map. Then prove that 10 following are equivalent
 - i) The map $F: N \to M$ is C^{∞} .
 - ii) There are atlases μ for N & μ for M such that for every chart (U, ϕ) in μ and (V, Ψ) in μ , the map $\Psi o F o \phi^{-1} : \phi (U \cap F^{-1}(U)) \to R^m$ is C^{∞}
 - iii) For every chart (U, ϕ) on N and (V, Ψ) on M, the map $\Psi \circ F \circ \phi^{-1} : \phi (U \cap F^{-1}(U)) \to R^m$ is C^{∞}

OR

c) Define diffeomorphism of manifolds, and further prove that

i) If (U,ϕ) is a chart on a manifold M of dimension n, then the coordinate map $\phi: U \rightarrow \phi(U) \tau \mathbb{R}^n$ is a diffeomorphism

ii) Let U be an open subset of a manifold M of dimension n. If $F: U \to F(U)\tau \mathbb{R}^n$ is a diffeomorphism onto an open subset of \mathbb{R}^n , then (U,F) is a chart in the

differentiable structure of M.

- d) State & prove inverse function theorem for manifolds
- 5. a) If $\{f_n\}$ be a sequence of continuous function on E and $f_n \rightarrow f$ uniformly on E Then prove 5 that f is continuous on E
 - b) State inverse function theorem
 - c) Show that the cross

with the subspace topology is not locally Euclidean at the intersection p & so cannot be a topological manifold.

d) Suppose
$$(U, x^1, x^2 - - x^n)$$
 is a chart on a manifold. Then prove that $\frac{\partial x^i}{\partial x^j} = \delta^i_j$ 5

10

10

10

10

5

5