P. Pages : 2

10

Time : Three Hours

Notes :	1.	All five questions are compulsory.
	2.	Each question carries equal marks.

UNIT – I

- 1. a) Let G be a group, and let G' be the derived group of G. 10 Then prove that i) $G' \triangleleft G$ ii) G/G' is abelian iii) If $H \triangleleft G$, then G/H is abelian iff $G' \subseteq H$.
 - b) Let H & K be normal subgroups of G and $K \subseteq H$. Then prove that $(G/K)/(H/K) \simeq G/H$

OR

- c) Prove that a nonabelian group of order 6 is isomorphic to S_3 . 10
- d) If G is a group with center Z(G), and if G/Z(G) is cyclic, then prove that G must be abelian. 10

UNIT – II

- 2. a) Let G be a group. If G is solvable, then prove that every subgroup of G and every 10 homomorphic image of G are solvable. Conversely, if N is a normal subgroup of G such that N & G/N are solvable, then prove that G is solvable.
 - b) If a permutation $6 \in S_n$ is a product of r transpositions and also a product of S **10** transpositions, then prove that r and S are either both even or both odd.

OR

- c) If a cyclic group has exactly one composition series, then prove that it is a p group. 10
- d) Let G be a nilpotent group. Then prove that every subgroup of G and every homomorphic **10** image of G are nilpotent.

UNIT – III

- 3. a) Let G be a finite group, and let p be a prime. Then prove that all Sylow P subgroups of **10** G are conjugate, and their number n_p divides O (G) & satisfies $n_p \equiv 1 \pmod{p}$.
 - b) Prove that there are no simple groups of orders 42, 48 and 200. **10**

OR

1

- 10 c) Let G be a finite group, and let p be a prime. If p^m divides |G|, then G has a subgroup of order p^m.
- Let G be a group of order pq, where p & q are prime numbers such that p > q and 10 d) q X(p-1). Then prove that G is cyclic.

$\mathbf{UNIT} - \mathbf{IV}$

For any two ideals A & B in a ring R, prove that 4. a)

i)
$$\frac{A+B}{B} \simeq \frac{A}{A \cap B}$$

ii)
$$\frac{A+B}{A\cap B} \simeq \frac{A+B}{A} \times \frac{A+B}{B} \simeq \frac{B}{A\cap B} \times \frac{A}{A\cap B}$$

If a ring R has unity, then prove that every ideal I in the matrix ring R_n is of the form A_n , b) 10 where A is some ideal in R.

OR

c)	For any ring R and any ideal $A \neq R$, prove that the following are equivalent: i) A is maximal ii) The quotient ring R/A has no nontrivial ideals. iii) For any element $x \in R$, $x \notin A$, $A + (x) = R$.	10
d)	Let R be a commutative principal ideal domain with identity. Then prove that any nonzero ideal $P \neq R$ is prime if & only if it is maximal.	10
a)	Define: i) Normal subgroup ii) Commutator subgroup	5
b)	Define: i) Alternating group ii) Solvable group	5
c)	Prove that a group of order 1986 is not simple.	5
d)	Define: i) Ideal ii) Ring homomorphism.	5

5.

10