M.Sc. (Mathematics) (NEW CBCS Pattern) Sem-I PSCMTH01: Group Theory & Ring Theory

P. Pages: 2

Time : Three Hours

GUG/W/22/13737

Max. Marks: 100

Notes :1.All five questions are compulsory.2.Each question carries equal marks.

UNIT – I

1. a)Prove that every group is isomorphic to a permutation group.10

b) Let $\phi: G \to G'$ be a homomorphism of groups. Then prove that $G/\ker \phi \simeq \operatorname{Im} \phi$. 10

OR

- c) Prove that the set Aut (G) of all automorphisms of a group G is a group under composition 10 of mappings, and In (G) \triangleleft Aut(G). Moreover, prove that $G/Z(G) \simeq In(G)$.
- d) Let G be a finite group acting on a finite set x. Then prove that the number k of orbits in X 10 under G is

$$K = \frac{1}{\mid G \mid} \sum_{g \in G} \mid X_g \mid$$

UNIT – II

2.	a)	Prove that any two composition series of a finite group are equivalent.	10
	b)	Prove that the alternating group An is simple if $n > 4$. Moreover, prove that S_n is not	10
		solvable if $n > 4$.	

OR

- c) Let G be a nilpotent group. Then prove that every subgroup of G and every homomorphic **10** image of G are nilpotent.
- d) Prove that any two conjugate permutations in S_n have the same cycle structure. Conversely, 10 prove that any two permutations in S_n with the same cycle structure are conjugate.

UNIT – III

- 3. a) Let G be a finite group, and let p be a prime. If p^m divides |G|, then prove that G has a subgroup of order p^m .
 - b) Prove that there are no simple groups of orders 63, 56, and 36. **10**

OR

	c)	Let G be a group of order pq, where p & q are prime number such that $p > q \& q \not (p-1)$. Then prove that G is cyclic.	10
	d)	Let G be a group of order 108. Prove that there exists a normal subgroup of order 27 or 9.	10
		$\mathbf{UNIT} - \mathbf{IV}$	
4.	a)	If a ring R has unity, then prove that every ideal I in the matrix ring R_n is of the form A_n , where A is some ideal in R.	10
	b)	In a nonzero commutative ring with unity, prove that an ideal M is maximal if & only if R/M is a field.	10
		OR	
	c)	Let f be a homomorphism of a ring R into a ring S with kernel N. Then prove that $R / N \simeq Imf$.	10
	d)	If R is a nonzero ring with unity 1 and I is an ideal in R such that $I \neq R$ then prove that there exists a maximal ideal M of R such that $I \subseteq M$.	10
5.	a)	If G is a group and H is a subgroup of index 2 in G, then prove that H is a normal subgroup of G.	5
	b)	Prove that the derived group of S_n is A_n .	5
	c)	If the order of group is 42, prove that its sylow 7- subgroup is normal.	5
	d)	Define i) Maximal Ideal & ii) Prime ideal.	5
