B.Sc. T.Y. (CBCS Pattern) Sem-VI

 USDSEPHT14 - Physics (Paper-II) : Digital \& Analog Circuits and

 USDSEPHT14 - Physics (Paper-II) : Digital \& Analog Circuits and Instrumentation

 Instrumentation}
P. Pages : 2

Time : Three Hours

* 0645 *

GUG/W/22/13366
Max. Marks : 50

Notes : 1. All questions are compulsory.
2. Draw well labelled diagram wherever necessary.

Either :

1. a) i) Explain Decimal to Binary conversion and convert (a)(13) $)_{10}$ (b) (29) ${ }_{10}$ to Binary.
ii) Perform the following subtraction by using 2 's complement.
a) $(11000)_{2}-(100)_{2}$
b) $(101011)_{2}-(10010)_{2}$
c) $(1111)_{2}-(0101)_{2}$

OR

b) 1) What is Ex-OR gate? Draw its symbol. Write Boolean expression for two input Ex- $21 / 2$
OR gate \& give its Truth Table.
2) Convert as directed
a) $(\mathrm{FCB})_{16}=(?)_{10}$
b) $\quad(11001)_{2}=(?)_{10}$
c) $\quad(6 \mathrm{AE})_{16}=(?)_{2}$
3) Reduce the logical expression $\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\overline{\mathrm{B}})(\overline{\mathrm{A}}+\mathrm{B})$ and Draw logic circuit. $\quad \mathbf{2 1 ⁄ 2}^{\mathbf{1} / 2}$
4) Construct basic Gates by using NAND gate. $21 / 2$

Either:
2. a) i) What is rectifier? Draw the circuit diagram of full wave rectifier and explain its working.
ii) Derive an expression for efficiency of full wave rectifier.
iii) In centre tapped full wave rectifier the peak value of current is 0.1041 Amp , Calculate ripple factor.

OR

b) 1) Explain the working of PN Junction diode in forward bias and draw its characteristics. $\mathbf{2}^{1 / 2}$
2) Show that maximum rectifier efficiency for Half wave rectifier is 40.6%. $\mathbf{2 1}^{\mathbf{1} / 2}$
3) Explain working of zenor diode as a voltage regulator. $\mathbf{2 1}^{21 / 2}$
4) What is photo cell? State its any two applications. $\quad 2 \frac{1}{2}$

Either:
3. a) i) What is transistor? Explain the working of NPN transistor. 3
ii) Explain the input and output characteristic of NPN transistor. in CE mode with necessary circuit diagram.
iii) The current gain α of an transistor is 0.98 it is connected in CB mode. If the base current, changed by 0.2 mA . Calculate change in collector current, current gain β and emitter current.
b) 1) In CE Amplifier, the load resistance in the collector circuit is $4 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$. Find the co-ordinates of the operating point, if zero signal base current is $20 \mu \mathrm{~A}$ and $\beta=100$.
2) Explain class A and class B Amplifier.
3) Explain the working of two stage RC coupled Amplifier.
4) Explain why the gain of an amplifier is low at low \& high frequency region.

Either:
4. a) i) What is an op-Amp? Draw the block diagram of an op-Amp and explain the function of each stage.
ii) State and explain any four characteristics of an ideal op-Amp.
iii) A differential amplifier has difference mode gain is 100 and $C M R R=100$, Calculate output voltage if the inputs are $\mathrm{V}_{1}=1 \mathrm{mV}$ and $\mathrm{V}_{2}=0.9 \mathrm{mV}$.

OR

b) 1) Explain concept of virtual ground in operational Amplifier.
2) Draw the circuit diagram of op-Amp as an inverting amplifier \& obtain an expression for its closed loop voltage gain.
3) Explain an op-Amp as a subtractor. $2^{1 / 2}$
4) The input to the op-Amp as a differentiator circuit is $V_{i}=5 \sin (2 \pi \times 1000 t)$. Find the $2^{1 / 2}$ output if $\mathrm{R}=100 \mathrm{k} \Omega$ and $\mathrm{C}=1 \mu \mathrm{~F}$.
5. Solve any ten of following.
a) What is Boolean expression?
b) Write truth taste of Exclusive NOR gate.
c) Simplify $Y=\overline{\bar{A}+\beta}$
d) What is depletion region?
e) State any two application of LED.
f) State the filter circuit in a power supply.
g) Draw symbol of NPN and PNP Transistor
h) What is amplifier?
i) What is the relation between α and β
j) Draw the pin configuration of op-Amp IC 741.
k) Determine the output voltage for the summing amplifier.

1) Define slew rate.
