B.Sc. T.Y. (CBCS Pattern) Sem-VI **USDSEPHT13 - Physics (Paper-I) : Nuclear and Particle Physics**

P. Pages: 2 Time : Three Hours Notes : 1. All questions are compulsory. 2. Draw neat labelled diagram wherever necessary. **Either:** 5 1. i) Explain basic properties of nucleus in terms of Nuclear size, mass and charge density. a) ii) What is Nuclear Binding energy? Draw the curve for Binding energy per nucleon 3 versus mass number and write its main features. Taking the mass of proton as 1.007276 amu and that of neutron 1.008665 amu. 2 iii) Calculate the mass defect and binding energy for 8^{016} having nuclear mass is 15.990523 amu. OR $2^{1/2}$ b) Explain packing fraction and its variation with mass number. 1) 2) Explain Angular momentum and Nuclear magnetic momentum. $2^{1/2}$ $2^{1/2}$ 3) States electric moments and magnetic moment of an atom. $2^{1/2}$ 4) Find the binding energy of deuteron. Given : $m_p = 1.007276 \text{ u}$; $m_n = 1.008665 \text{ u}$ and $Z^{M^A} = 2.013553$ u. **Either:** 2. Explain nuclear Fission on the basis of liquid drop model. Writes its merits and 5 a) i) limitations. States the main assumptions of shell model of the nucleus. Write its merits and 5 ii) Failures. OR Write the general concept of Nuclear forces. $2^{1/2}$ B) 1) 2) Describe semi Empirical mass formula. $2^{1/2}$ 3) $2^{1/2}$ Describe origin of Magic Number.

Calculate the energy released in MeV. When deuteron fuses with a tritium to form $2^{1/2}$ 4) heavy nucleus and one neutron (Given: 1 amu = 931.5 MeV) Mass of deuterium = 2.01474 amu Mass of tritium = 3.01700 amu Mass of helium = 4.00387 amu Mass of neutron = 1.00898 amu

Either:

3. Explain Gamma ray interaction through matter. Describe methods of measurement of 5 a) i) Gamma rays energies by pair production and Absorption of Gamma rays by matter. 5

Describe the discovery of Neutron and Estimation of mass of Neutron. ii)

OR

Max. Marks: 50

	b)	1)	Define the term Nuclear reaction. What is meant by 'Q' value of a nuclear reaction.	21/2
		2)	Write the difference between Exo-ergic and Endo-ergic nuclear reaction.	21/2
		3)	Explain any two Laws of Nuclear reactions.	21/2
		4)	Write briefly Cerenkov radiation.	21/2
		Either:		
4.	a)	i)	Explain the construction and working of linear accelerator. Show that the length of cylindrical electrode in a linear accelerator is proportional to square root of the	5

number of that electrode
ii) Describe construction & working of Geiger-Mueller counter. What are the main features of G. M. tube. Discuss the importance of quenching in G. M. tube.

OR

b)	1)	Describe the construction and working if cyclotron. Obtain an expression for the	21/2
		accelerated particles.	
	2)	Explain Van-de Graaff generator.	21/2
	3)	Describe principle, construction and working of Wilson Cloud Chamber.	21/2
	4)	If the frequency of oscillator potential applied to the dee's of the cyclotron is 9MHz. What must be magnetic flux density B to accelerate the alpha particles.	
		(Given : Mass of alpha particle = 6.643×10^{-27} kg; Charge of $\alpha = 3.204 \times 10^{-19}$ C)	

5. Solve **any ten** questions of the followings.

a)	Define Mass defect.	1
b)	What is Bohr Magneton?	1
c)	Write constituents of nucleus.	1
d)	What are the conditions of nuclear stability?	1
e)	Write on Fermi gas Model.	1
f)	Give the main assumptions of liquid drop model of nucleus.	1
g)	What is Cerenkov radiation.	1
h)	What is meant by reaction cross section.	1
i)	Write Neil-Bohrs formula.	1
j)	Define Dead time.	1
k)	Write limitation of cyclotron.	1
1)	Write principle of scintillation counter.	1
