021B - Mathematics-III - DSE-VII : Linear Programming and Transportation Problems

P. Pages: 4

GUG/W/22/13364
Time : Three Hours

Notes : 1. Solve all the five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Obtain an initial feasible solution of the following:

$$
\begin{aligned}
& 2 x_{1}+x_{3} \geq 5 \\
& 5 x_{1}-2 x_{3} \geq-3 \\
& 3 x_{1}+x_{2}-7 x_{3}=16
\end{aligned}
$$

b) Express the following L.P. problem in the matrix standard form.

Minimize: $Z=x_{1}+2 x_{2}+3 x_{3}$
Subject to: $3 x_{1}+4 x_{3} \leq 5$
$5 x_{1}+x_{2}+6 x_{3}=7$
$8 x_{1}+9 x_{3} \geq 2$
With : $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$

OR

c) Put the following Linear program in its standard form with non-negative variables:

Minimize: $\mathrm{Z}=25 \mathrm{x}_{1}+30 \mathrm{x}_{2}$
Subject to: $4 \mathrm{x}_{1}+7 \mathrm{x}_{2} \geq 1$
$8 x_{1}+5 x_{2} \geq 3$
$6 x_{1}+9 x_{2} \geq 2$
With : $\mathrm{x}_{1}, \mathrm{x}_{2}$ unrestricted in sign.
d) Prove that Intersection of any two convex set is also a convex set.

UNIT - II
2. a) Solve the following LP problem by simply method

Maximize: $Z=3 x_{1}+4 x_{2}$
Subject to : $2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6$
$2 x_{1}+3 x_{2} \leq 9$
With $\quad: \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
b) Use two phase method to solve the LPP.

Minimize: $\mathrm{Z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}$
Subject to: $x_{1}+3 x_{2} \geq 11$
$2 x_{1}+x_{2} \geq 9$
With : $x_{1}, x_{2} \geq 0$

OR

c) Solve the linear program by Big-M method.

$$
\begin{aligned}
\text { Maximize }: & \mathrm{Z}=4 \mathrm{x}_{1}+5 \mathrm{x}_{2}-3 \mathrm{x}_{3} \\
\text { Subject to : } & \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=10 \\
& \mathrm{x}_{1}-\mathrm{x}_{2} \geq 1 \\
& 2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \leq 30
\end{aligned}
$$

With : $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$
d) Determine the symmetric dual of the L.P. problem

Maximize: $Z=5 x_{1}+2 x_{2}$
Subject to: $6 x_{1}+x_{2} \geq 6$

$$
4 x_{1}+3 x_{2} \geq 12
$$

$$
x_{1}+2 x_{2} \geq 4
$$

With : $x_{1}, x_{2} \geq 0$
Also solve the dual directly and hence verify that if a dual problem has no feasible solution, then its primal have a feasible solution but not optimal.

UNIT - III

3. a) Determine an initial basic feasible solution to the following transportation problem using Vogel's method.

b) Determine an initial basic feasible solution to the following transportation problem using north - west corner rule.

OR

c) Find the initial basic feasible solution of the transportation problem by least cost method.

Warehouse Factory \downarrow	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	Factory Capacity
F_{1}	19	30	50	10	7
$\mathrm{~F}_{2}$	70	30	40	60	9
$\mathrm{~F}_{3}$	40	8	70	20	18
Warehouse requirement	5	8	7	14	34

d) Determine an initial basic feasible solution to the following transportation problem. Using Vogel's approximation method.

UNIT - IV

4. a) Maximize $\mathrm{Z}=\mathrm{x}(5 \pi-\mathrm{x})$ on $[0,20]$.
b) Find all local and global optima for $f(x)=x+\frac{1}{x}$ on $(0, \infty)$.

OR

c) Define concave function

Show that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-6 \mathrm{x}^{2}+9 \mathrm{x}+6$ is strictly concave on $(-\infty, 2)$ and strictly convex on $(2, \infty)$
d) HMT Ltd. decide to make four subassemblies through four contractors. Each contractor is to receive only one subassembly. The cost of each subassembly is determined by the bids submitted by each contractor and is shown in the following table in hundreds of rupees. Assign the different subassemblies to contractors to minimize the total cost.

5. Attempt any six.
a) Write general form of LPP. 2
b) Define surplus variable. 2
c) Obtain the symmetric dual of LPP. 2
Maximize: $\mathrm{Z}=12 \mathrm{x}_{1}+26 \mathrm{x}_{2}+80 \mathrm{x}_{3}$

$$
\text { Subject to: } 2 x_{1}+6 x_{2}+5 x_{3} \geq 4
$$

$$
4 x_{1}+2 x_{2}+x_{3} \geq 10
$$

$$
x_{1}+x_{2}+2 x_{3} \geq 6
$$

$$
\text { With } \quad: \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
$$

d) What is the condition for optimality in simplex table? 2
e) Define feasible solution to Transportation problem. 2
f) State the mathematical formulation of transportation problem. 2
g) Define global maximum. 2
h) What is an assignment problem? 2

